Skip to main content

Current Biomarkers for Precision Medicine in Breast Cancer

  • Chapter
  • First Online:
Translational Research in Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1187))

Abstract

Breast cancer has become the prototypical solid tumor where targets have been identified within the tumor allowing for personalized approach for systemic therapy. Biomarkers are beginning to play an important role in preparing the way for precision treatment. Mandatory biomarkers for every newly diagnosed case of breast cancer are estrogen receptors and progesterone receptors in selecting patients for endocrine treatment and HER2 for identifying patients likely to benefit from antiHER2 therapy. Although methodological problems exist in the determination of Ki67, because of its clearly established clinical value, wide availability, and low costs relative to the available multianalyte signatures, Ki67 may be used for determining prognosis, especially if values are low or high. Also, the androgen receptor (AR) pathway is emerging as a potential therapeutic target in breast cancer. AR-targeted treatments for breast cancer are in development and have shown promising preliminary results. While, most established biomarkers in breast cancer require tissue samples, serum tumor markers are easily accessible and require a less invasive procedure. Among them, tissue polypeptide-specific antigen (TPS), a specific epitope structure of a peptide in serum associated with human cytokeratin 18, is linked to the proliferative activity of tumors. TPS may be a valuable and independent prognostic biomarker for breast cancer.

In order to accelerate progress towards precision treatment for women with breast cancer, we need additional predictive biomarker, especially for enhancing the positive predictive value for endocrine and antiHER2 therapies, as well as biomarkers for predicting response to specific forms of chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen EV, Block GE, Smith S, Kyser K, DeSombre ER. Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr. 1971;34:55–70.

    CAS  PubMed  Google Scholar 

  2. Carroll JS. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. Eur J Endocrinol. 2016;175(1):R41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med. 2010;134(6):907–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Davies C, Godwin J, Gray R, Clarke M, Cutter D, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771–84.

    Article  CAS  PubMed  Google Scholar 

  5. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol. 1996;14(9):2584–9.

    Article  CAS  PubMed  Google Scholar 

  6. Schmitt M, Thomssen C, Ulm K, Seiderer A, Harbeck N, Hofler H, et al. Time-varying prognostic impact of tumour biological factors urokinase (uPA), PAI-1 and steroid hormone receptor status in primary breast cancer. Br J Cancer. 1997;76(3):306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP, et al. Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol. 1992;10(8):1284–91.

    Article  CAS  PubMed  Google Scholar 

  8. Elledge RM, Green S, Pugh R, Allred DC, Clark GM, Hill J, et al. Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by immuno-histochemistry in predicting response to tamoxifen in metastatic breast cancer: a Southwest Oncology Group Study. Int J Cancer. 2000;89(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  9. Peto R, Davies C, Godwin J, Gray R, Pan HC, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379(9814):432–44.

    Article  CAS  PubMed  Google Scholar 

  10. Harris LN, Ismaila N, McShane LM, Hayes DF. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract. 2016;12(4):384–9.

    Article  PubMed  Google Scholar 

  11. Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, et al. Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 2017;75:284–98.

    Article  CAS  PubMed  Google Scholar 

  12. Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–28.

    Article  CAS  PubMed  Google Scholar 

  13. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  14. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  CAS  PubMed  Google Scholar 

  15. Kallioniemi OP, Holli K, Visakorpi T, Koivula T, Helin HH, Isola JJ. Association of c-erbB-2 protein over-expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int J Cancer. 1991;49(5):650–5.

    Article  CAS  PubMed  Google Scholar 

  16. Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997;15(8):2894–904.

    Article  CAS  PubMed  Google Scholar 

  17. Dent S, Oyan B, Honig A, Mano M, Howell S. HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treat Rev. 2013;39(6):622–31.

    Article  CAS  PubMed  Google Scholar 

  18. Hicks M, Macrae ER, Abdel-Rasoul M, Layman R, Friedman S, Querry J, et al. Neoadjuvant dual HER2-targeted therapy with lapatinib and trastuzumab improves pathologic complete response in patients with early stage HER2-positive breast cancer: a meta-analysis of randomized prospective clinical trials. Oncologist. 2015;20(4):337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loibl S, Gianni L. HER2-positive breast cancer. Lancet. 2017;389(10087):2415–29.

    Article  CAS  PubMed  Google Scholar 

  20. Park HS, Sohn J, Kim SI, Park S, Park HS, Gho SG, et al. Effects of hormone receptor status on the durable response of trastuzumab-based therapy in metastatic breast cancer. Breast Cancer Res Treat. 2017;163(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  21. Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  22. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.

    Article  CAS  PubMed  Google Scholar 

  24. Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  25. Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leung SCY, Nielsen TO, Zabaglo L, Arun I, Badve SS, Bane AL, et al. Analytical validation of a standardized scoring protocol for Ki67: phase 3 of an international multicenter collaboration. NPJ Breast Cancer. 2016;2:16014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Inwald EC, Klinkhammer-Schalke M, Hofstadter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139(2):539–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buxant F, Anaf V, Simon P, Fayt I, Noel JC. Ki-67 immunostaining activity is higher in positive axillary lymph nodes than in the primary breast tumor. Breast Cancer Res Treat. 2002;75(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  29. Park D, Karesen R, Noren T, Sauer T. Ki-67 expression in primary breast carcinomas and their axillary lymph node metastases: clinical implications. Virchows Arch. 2007;451(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  30. Jung SY, Han W, Lee JW, Ko E, Kim E, Yu JH, et al. Ki-67 expression gives additional prognostic information on St. Gallen 2007 and Adjuvant! Online risk categories in early breast cancer. Ann Surg Oncol. 2009;16(5):1112–21.

    Article  Google Scholar 

  31. Kim J, Han W, Jung SY, Park YH, Moon HG, Ahn SK, et al. The value of Ki67 in very young women with hormone receptor-positive breast cancer: retrospective analysis of 9,321 Korean women. Ann Surg Oncol. 2015;22(11):3481–8.

    Article  PubMed  Google Scholar 

  32. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Curigliano G, Burstein HJ, Gnant M, Dubsky P, Loibl S, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017;28(8):1700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Azambuja E, Cardoso F, de Castro G, Colozza M, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 2007;96(10):1504–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Petrelli F, Viale G, Cabiddu M, Barni S. Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients. Breast Cancer Res Treat. 2015;153(3):477–91.

    Article  PubMed  Google Scholar 

  36. Criscitiello C, Disalvatore D, De Laurentiis M, Gelao L, Fumagalli L, Locatelli M, et al. High Ki-67 score is indicative of a greater benefit from adjuvant chemotherapy when added to endocrine therapy in luminal B HER2-negative and node-positive breast cancer. Breast. 2014;23(1):69–75.

    Article  PubMed  Google Scholar 

  37. Penault-Llorca F, Andre F, Sagan C, Lacroix-Triki M, Denoux Y, Verriele V, et al. Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009;27(17):2809–15.

    Article  CAS  PubMed  Google Scholar 

  38. Dumontet C, Krajewska M, Treilleux I, Mackey JR, Martin M, Rupin M, et al. BCIRG 001 molecular analysis: prognostic factors in node-positive breast cancer patients receiving adjuvant chemotherapy. Clin Cancer Res. 2010;16(15):3988–97.

    Article  CAS  PubMed  Google Scholar 

  39. Keam B, Im SA, Lee KH, Han SW, Oh DY, Kim JH, et al. Ki-67 can be used for further classification of triple-negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res. 2011;13(2):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Luporsi E, Andre F, Spyratos F, Martin PM, Jacquemier J, Penault-Llorca F, et al. Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review. Breast Cancer Res Treat. 2012;132(3):895–915.

    Article  CAS  PubMed  Google Scholar 

  41. Denkert C, Loibl S, Muller BM, Eidtmann H, Schmitt WD, Eiermann W, et al. Ki67 levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: a translational investigation in the neoadjuvant GeparTrio trial. Ann Oncol. 2013;24(11):2786–93.

    Article  CAS  PubMed  Google Scholar 

  42. von Minckwitz G, Schmitt WD, Loibl S, Muller BM, Blohmer JU, Sinn BV, et al. Ki67 measured after neoadjuvant chemotherapy for primary breast cancer. Clin Cancer Res. 2013;19(16):4521–31.

    Article  CAS  Google Scholar 

  43. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25(33):5287–312.

    Article  CAS  PubMed  Google Scholar 

  44. Dimitrakakis C, Bondy C. Androgens and the breast. Breast Cancer Res. 2009;11(5):212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Narayanan R, Coss CC, Dalton JT. Development of selective androgen receptor modulators (SARMs). Mol Cell Endocrinol. 2017;59(1):1–31.

    Google Scholar 

  46. Majumder A, Singh M, Tyagi SC. Post-menopausal breast cancer: from estrogen to androgen receptor. Oncotarget. 2017;8(60):102739–58.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev. 2005;105(9):3352–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol. 2008;29(2):169–81.

    Article  CAS  PubMed  Google Scholar 

  49. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garay JP, Karakas B, Abukhdeir AM, Cosgrove DP, Gustin JP, Higgins MJ, et al. The growth response to androgen receptor signaling in ERalpha-negative human breast cells is dependent on p21 and mediated by MAPK activation. Breast Cancer Res. 2012;14(1):R27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Panet-Raymond V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA. Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol. 2000;167(1-2):139–50.

    Article  CAS  PubMed  Google Scholar 

  52. Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 2011;30(15):3019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karamouzis MV, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Targeting androgen/estrogen receptors crosstalk in cancer. Trends Cancer. 2016;2(1):35–48.

    Article  PubMed  Google Scholar 

  54. Li W, O'Shaughnessy J, Hayes D, Campone M, Bondarenko I, Zbarskaya I, et al. Biomarker associations with efficacy of abiraterone acetate and exemestane in postmenopausal patients with estrogen receptor-positive metastatic breast cancer. Clin Cancer Res. 2016;22(24):6002–9.

    Article  CAS  PubMed  Google Scholar 

  55. Secreto G, Venturelli E, Meneghini E, Greco M, Ferraris C, Gion M, et al. Testosterone and biological characteristics of breast cancers in postmenopausal women. Cancer Epidemiol Biomark Prev. 2009;18(11):2942–8.

    Article  CAS  Google Scholar 

  56. Secreto G, Meneghini E, Venturelli E, Cogliati P, Agresti R, Ferraris C, et al. Circulating sex hormones and tumor characteristics in postmenopausal breast cancer patients. A cross-sectional study. Int J Biol Markers. 2011;26(4):241–6.

    Article  PubMed  Google Scholar 

  57. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.

    Article  CAS  PubMed  Google Scholar 

  58. Loibl S, Muller BM, von Minckwitz G, Schwabe M, Roller M, Darb-Esfahani S, et al. Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;130(2):477–87.

    Article  CAS  PubMed  Google Scholar 

  59. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among seven triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40.

    Article  CAS  PubMed  Google Scholar 

  60. De Amicis F, Thirugnansampanthan J, Cui Y, Selever J, Beyer A, Parra I, et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat. 2010;121(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  61. Rechoum Y, Rovito D, Iacopetta D, Barone I, Ando S, Weigel NL, et al. AR collaborates with ERalpha in aromatase inhibitor-resistant breast cancer. Breast Cancer Res Treat. 2014;147(3):473–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujii R, Hanamura T, Suzuki T, Gohno T, Shibahara Y, Niwa T, et al. Increased androgen receptor activity and cell proliferation in aromatase inhibitor-resistant breast carcinoma. J Steroid Biochem Mol Biol. 2014;144(Pt B):513–22.

    Article  CAS  PubMed  Google Scholar 

  63. Masiello D, Cheng S, Bubley GJ, Lu ML, Balk SP. Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J Biol Chem. 2002;277(29):26321–6.

    Article  CAS  PubMed  Google Scholar 

  64. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res. 2013;19(19):5505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  66. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324(5928):787–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwartzberg LS, Yardley DA, Elias AD, Patel M, LoRusso P, Burris HA, et al. A phase I/Ib study of enzalutamide alone and in combination with endocrine therapies in women with advanced breast cancer. Clin Cancer Res. 2017;23(15):4046–54.

    Article  CAS  PubMed  Google Scholar 

  68. Loriot Y, Miller K, Sternberg CN, Fizazi K, De Bono JS, Chowdhury S, et al. Effect of enzalutamide on health-related quality of life, pain, and skeletal-related events in asymptomatic and minimally symptomatic, chemotherapy-naive patients with metastatic castration-resistant prostate cancer (PREVAIL): results from a randomised, phase 3 trial. Lancet Oncol. 2015;16(5):509–21.

    Article  CAS  PubMed  Google Scholar 

  69. Loddick SA, Ross SJ, Thomason AG, Robinson DM, Walker GE, Dunkley TP, et al. AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo. Mol Cancer Ther. 2013;12(9):1715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brand LJ, Olson ME, Ravindranathan P, Guo H, Kempema AM, Andrews TE, et al. EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer. Oncotarget. 2015;6(6):3811–24.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Toren PJ, Kim S, Pham S, Mangalji A, Adomat H, Guns ES, et al. Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer. Mol Cancer Ther. 2015;14(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  72. Weber K, Osborn M, Moll R, Wiklund B, Luning B. Tissue polypeptide antigen (TPA) is related to the non-epidermal keratins 8, 18 and 19 typical of simple and non-squamous epithelia: re-evaluation of a human tumor marker. EMBO J. 1984;3(11):2707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bjorklund B, Bjorklund V. Antigenicity of pooled human malignant and normal tissues by cyto-immunological technique; presence of an insoluble, heat-labile tumor antigen. Int Arch Allergy Appl Immunol. 1957;10(3):153–84.

    Article  CAS  PubMed  Google Scholar 

  74. Bodenmuller H, Donie F, Kaufmann M, Banauch D. The tumor markers TPA, TPS, TPACYK and CYFRA 21-1 react differently with the keratins 8, 18 and 19. Int J Biol Markers. 1994;9(2):70–4.

    Article  CAS  PubMed  Google Scholar 

  75. Coulombe PA, Omary MB, et al. ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 2002;14(1):110–22.

    Article  CAS  PubMed  Google Scholar 

  76. Given M, Scott M, Mc Grath JP, Given HF. The predictive of tumour markers CA 15-3, TPS and CEA in breast cancer recurrence. Breast. 2000;9(5):277–80.

    Article  CAS  PubMed  Google Scholar 

  77. O’Hanlon DM, Kerin MJ, O'Boyle C, Grimes H, Given HF. Tissue polypeptide specific antigen (TPS) in breast cancer--an initial evaluation. Eur J Surg Oncol. 1996;22(1):38–41.

    Article  PubMed  Google Scholar 

  78. Ahn SK, Moon HG, Ko E, Kim HS, Shin HC, Kim J, et al. Preoperative serum tissue polypeptide-specific antigen is a valuable prognostic marker in breast cancer. Int J Cancer. 2013;132(4):875–81.

    Article  CAS  PubMed  Google Scholar 

  79. Schuurman JJ, Bong SB, Einarsson R. Determination of serum tumor markers TPS and CA 15-3 during monitoring of treatment in metastatic breast cancer patients. Anticancer Res. 1996;16(4B):2169–72.

    CAS  PubMed  Google Scholar 

  80. Van Dalen A, Barak V, Cremaschi A, Gion M, Molina R, Namer M, et al. The prognostic significance of increasing marker levels in metastatic breast cancer patients with clinically complete remission, partial remission or stable disease. Int J Biol Markers. 1998;13(1):10–5.

    Article  PubMed  Google Scholar 

  81. Barak V, Kalickman I, Nisman B, Farbstein H, Fridlender ZG, Baider L, et al. Changes in cytokine production of breast cancer patients treated with interferons. Cytokine. 1998;10(12):977–83.

    Article  CAS  PubMed  Google Scholar 

  82. Barak V, Goike H, Panaretakis KW, Einarsson R. Clinical utility of cytokeratins as tumor markers. Clin Biochem. 2004;37(7):529–40.

    Article  CAS  PubMed  Google Scholar 

  83. Inaba N, Fukasawa I, Okajima Y, Ota Y, Tanaka K, Matsui H, et al. Immunoradiometrical measurement of tissue polypeptide specific antigen (TPS) in normal, healthy, nonpregnant and pregnant Japanese women. Asia Oceania J Obstet Gynaecol. 1993;19(4):459–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahn, S.k., Jung, SY. (2021). Current Biomarkers for Precision Medicine in Breast Cancer. In: Noh, DY., Han, W., Toi, M. (eds) Translational Research in Breast Cancer. Advances in Experimental Medicine and Biology, vol 1187. Springer, Singapore. https://doi.org/10.1007/978-981-32-9620-6_18

Download citation

Publish with us

Policies and ethics