Skip to main content

Algal Biomass: Potential Renewable Feedstock for Biofuel Production

  • Chapter
  • First Online:
Substrate Analysis for Effective Biofuels Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Algae possess immense potential to yield a myriad of valuable products which find wide application in waste water remediation, nutraceuticals, and aquaculture. The natural products from algae have attained significant attention owing to their extraordinary efficiency which makes them suitable for a plethora of application as biofuels, waste water remediation agents, therapeutics, food and feed, nutraceuticals, biocontrol agents, and aquaculture. Despite the huge potential of algae, studies are limited owing to the fact the difficulties in isolation and cultivation, the significant impact of nutrients, contaminants, and sessional variations. Waste waters tend to act as a source of nutrients, thereby facilitating the growth of algae, which in turn quench the excessive nutrients and heavy metals leading to the phycoremediation of waste waters. Algae can produce a plethora of biofuels including biodiesel, biogas, and bioethanol to name a few. This chapter elaborates the potential of algae biomass as a renewable feedstock for biofuel production and their further utilisation as a promising source of nutraceuticals and high-value products, which can be a sustainable solution making the best out of waste for a better global environment and economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali CH, Qureshi AS, Mbadinga SM, Liu JF, Yang SZ, Mu BZ (2017) Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: central composite design approach. Renew Energy 109:93–100

    Article  CAS  Google Scholar 

  • Archana T (2014) Cyanobacteria: nature, potentials and applications. Astral International Publishing House, New Delhi

    Google Scholar 

  • Archana T, Anjana P (2012) Cyanobacterial hydrogen production – a step towards clean environment. Int J Hydrog Energy 37:139–150

    Article  CAS  Google Scholar 

  • Archana T, Kiran T (2018) Biofuels from microalgae. In: Advances in biofuels and bioenergy. https://doi.org/10.5772/intechopen

    Chapter  Google Scholar 

  • Archana T, Kiran T, Pandey A (2019) Algal photobiohydrogen production. In: Konur O (ed) Bioenergy and biofuels. CRC Press, Boca Raton

    Google Scholar 

  • Ashutosh P, Archana P, Priya S, Anjana P (2007) Using reverse micelle as microreactor for hydrogen production by coupled system of Nostoc/P4 and Anabaena/P4. World J Microbiol Biotechnol 23:269–274

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 2002(22):245–279

    Article  Google Scholar 

  • Boyle G (ed) (2012) Renewable energy: power for a sustainable future, 3rd edn. Oxford University Press/Open University, Oxford

    Google Scholar 

  • Braun A, Reith J (1993) Algen in de Nederlandseenergiehuishouding, in opdracht van het programma, EnergiewinninguitAfval en Biomassa (EWAB) van Novem. Utrecht, Braun Consultants

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  • Brown K (1996) The utility of remote sensing technology for carbon sequestration. Winrock international, 1611 N. Kent St., Suite 600, Arlington, VA 22209, USA

    Google Scholar 

  • Chakrabarti T, Krishnamurthi K, Devi SS, Fulke BA (2018) CO2 sequestration by microalgae: advances and perspectives. Published by OMICS Group eBooks, Foster City

    Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  CAS  Google Scholar 

  • Chen Z, Wang G, Zeng C, Wu L (2018) Comparative study on the effects of two diatoms as diets on planktonic calanoid and benthic harpacticoid copepods. Ecol Integr Physiol 329:140. https://doi.org/10.1002/jez.2215

    Article  Google Scholar 

  • Cheng L-H, Lin Z, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329

    Article  CAS  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. (in place of Muhammad et al., 2018)

    Article  CAS  Google Scholar 

  • Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp cultures in outdoor tubular photobioreactors. J Biotechnol 70(1–3):299–312

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008a) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  • Chisti Y (2008b) Response to Reijnders: do biofuels from micromicroalgae beat biofuels from terrestrial plants. Trends Biotechnol 26(7):351–352

    Article  CAS  Google Scholar 

  • Chu WL (2017) Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. Eur J Phycol 52:419–437

    Article  CAS  Google Scholar 

  • Clifford RM, Kevan LM (2014) Microalgae (Diatom) production – the aquaculture and biofuel nexus. Oceans-St. John’s, IEEE2014, pp 1–10

    Google Scholar 

  • Cuellar-Bermudez SP, Romero-Ogawa MA, Rittmann BE, Parra-Saldivar R (2014) Algae biofuels production processes, carbon dioxide fixation and biorefinery concept. J Pet Environ Biotechnol 5:185. https://doi.org/10.4172/2157-7463.1000185

    Article  CAS  Google Scholar 

  • de Mes TZD, Stams AJM, Reith JH, Zeeman G (2003) Methane production by anaerobic digestion of wastewater and solid wastes. In: Biomethane & bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Hague, pp 58–102. isbn:9090171657

    Google Scholar 

  • Dhanker R, Molinero JC, Kumar R, Tseng LC, Ianora A, Hwang JS (2015) Responses of the estuarine copepod Pseudodiaptomus annandalei to diatom polyunsaturated aldehydes: reproduction, survival and postembryonic development. Harmful Algae 43:74–81

    Article  CAS  Google Scholar 

  • Dong T, Knoshaug EP, Davis R, Laurens LML, Van Wychen S, Pienkos PT, Nagle N (2016) Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Res 19:316–323

    Article  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Edzwald JK (1993) Coagulation in, drinking water treatment: particles, organics and coagulants. Water Sci Technol 27(11):21–35

    Article  CAS  Google Scholar 

  • Gao KS, Wu YP, Li G, Wu HY, Villafane VE, Helbling EW (2007) Solar UV radiation drives CO2 fixation in marine phytoplankton: A double-edged sword. Plant Physiol 144(1):54–59

    Article  CAS  Google Scholar 

  • Gerardo ML et al (2015) Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Res 11:248–262. (in place of Plaza et al., 2009)

    Article  Google Scholar 

  • Gifuni I et al (2018) New ultra-flat photobioreactor for intensive microalgal production: the effect of light irradiance. Algal Res 34:134–142

    Article  Google Scholar 

  • Grima Molina E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

    Article  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732

    Article  CAS  Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of microalgae and their lipid metabolism. Biochimie 91(6):679–684

    Article  CAS  Google Scholar 

  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2003) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary. Aquac Res 31:637–659. https://doi.org/10.1046/j.1365-2109.2000.00492.x

    Article  Google Scholar 

  • Heede R, Oreskes N (2016) Potential emissions of CO2 and methane from proved reserves of fossil fuels: an alternative analysis. Glob Environ Chang 36:12–20

    Article  Google Scholar 

  • Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3(2):221–240

    Article  CAS  Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus-Braunii to transport fuels. Biotechnol Bioeng 24(1):193–205

    Article  CAS  Google Scholar 

  • Hossain A, Salleh A, Boyce A, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from microalgae as renewable energy. Am J Biochem Biotechnol 4:250–254

    Article  CAS  Google Scholar 

  • https://www.iea.org/newsroom/news/2019/february/iea-becomes-facilitator-of-biofuture-platform.html

  • https://www.opec.org/opec_web/en/4567.htm

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular Photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51(1):51–60

    Article  CAS  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photo- synthetic microbes: a new appraisal. Mitig Adapt Strat Glob Change 12:573–608

    Article  Google Scholar 

  • IRGC (2008) Risk governance guidelines for bioenergy policies. http://www.irgc.org/IMG/pdf/IRGC_Bioenergy-Exec_Sum.pdf

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photo- bioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  Google Scholar 

  • Johnson M, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23(10):294–306

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW et al (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862. https://doi.org/10.1016/j.biotechadv.2013.04.006

    Article  CAS  Google Scholar 

  • Korunić Z, Rozman V, LiÅ¡ka A, Lucić P (2016) A review of natural insecticides based on diatomaceous earths. Agriculture 22:10–18

    Article  Google Scholar 

  • Laurens LML, Chen-Glasser M, McMillan JD (2017) A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res 24:261–264

    Article  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20(3):280–285

    Article  CAS  Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing micro heterotrophs. J Microbiol Methods 43(2):107–116

    Article  CAS  Google Scholar 

  • Li YQ, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accu-mulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B et al (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091

    Article  CAS  Google Scholar 

  • Li X-l, Thomas Kiran M, Tao L, Li R, Tiwari A, Li G (2017a) Optimization of growth conditions and fatty acid analysis for three freshwater diatom isolates. Phycol Res 65(3):177–187. https://doi.org/10.1111/pre.12174

    Article  CAS  Google Scholar 

  • Li X-l, Marella TK, Tao L, Tiwari A, Li G (2017b) A novel growth method for diatom algae in aquaculture wastewater for natural food development and nutrient removal. Water Sci Technol 75(12):2777–2783. https://doi.org/10.2166/wst.2017.156

    Article  CAS  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722

    Article  CAS  Google Scholar 

  • Mann DG, Droop SJM (1996) Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32

    Article  Google Scholar 

  • Marella TK, Parine NR, Tiwari A (2018) Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water. Saudi J Biol Sci 25:704–770

    Article  CAS  Google Scholar 

  • Marella TK, Datta A, Patil MD, Dixit S, Tiwari A (2019) Biodiesel production through algal cultivation in urban wastewater using algal floway. Bioresour Technol 280:222–228

    Article  CAS  Google Scholar 

  • Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green microalgae as a source of energy. Plant Physiol 127(3):740–748

    Article  CAS  Google Scholar 

  • Meuleman B (2007) Personal communication on biomass conversion technology

    Google Scholar 

  • Miao XL, Wu QY (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  Google Scholar 

  • Minhas AK et al (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:1–19

    Article  Google Scholar 

  • Mitra M, Melis A (2008) Optical properties of microalgae for enhanced biofuels production. Opt Express 16(26):21807–21820

    Article  CAS  Google Scholar 

  • Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B (2015) Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol 46(2):150–156

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysiscarterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96(1):27–36

    Article  CAS  Google Scholar 

  • Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. Algal Biomass 1980:471–547

    Google Scholar 

  • Mulbry W, Kondrad S, Buyer J, Luthria D (2009) Optimization of an oil extraction process for microalgae from the treatment of manure effluent. J Am Oil Chem Soc 86:909–915

    Article  CAS  Google Scholar 

  • Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127:1727–1736

    Article  CAS  Google Scholar 

  • Pearsall RV, Connelly RL, Fountain ME, Hearn CS, Werst MD, Hebner RE et al (2011) Electrically dewatering microalgae. IEEE Trans Dielectr Electr Insul 18:1578–1583. https://doi.org/10.1109/TDEI.2011.6032827

    Article  CAS  Google Scholar 

  • Pohl P, Wagner H, Passig MVT (1968) Inhaltsstoffe von algen-II: Ãœber die unterschiedliche fettsäurezusammensetzung von salz- und süßwasseralgen. Phytochemistry 7:1565

    Article  CAS  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—A process view. J Biotechnol 142(1):64–69

    Article  CAS  Google Scholar 

  • Ramos J-L, Valdivia M, García-Lorente F, Segura A (2016) Benefits and perspectives on the use of biofuels. Microb Biotechnol 9(4):436–440

    Article  Google Scholar 

  • Ran CQ, Chen ZA, Zhang W, Yu XJ, Jin MF (2006) Characterization of photo- biological hydrogen production by several marine green microalgae. Wuhan Ligong Daxue Xuebao 28(Suppl 2):258–263

    Google Scholar 

  • RangaRao A, Ravishankar GA (2007) Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol 17(3):414–419

    CAS  Google Scholar 

  • Reith JH (2004) Duurzame co-productie van fijnchemicaliën en energieuit micro-algen: openbaareindrapport E.E.T. project K99005/398510-1010. Petten, Energieonderzoek Centrum Nederland

    Google Scholar 

  • Robinson CD (1986) Some factors influencing sedimentation. Ind Eng Chem 18:869–871. https://doi.org/10.1021/ie50200a036

    Article  Google Scholar 

  • Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJM, Allakhverdiev SI (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42(12):8450–8461

    Article  CAS  Google Scholar 

  • Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267:521–528

    Article  CAS  Google Scholar 

  • Rossignol N, Moan R, Jaouen P, Robert JM, Quemeneur F (1999) Continuous high-pressure disruption of marine diatom Haslea ostrearia. Assessment by laser diffraction particle sizer. Biotechnol Tech 13:909–913

    Article  CAS  Google Scholar 

  • Ruocco N, Costantini S, Zupo V, Lauritano C, Caramiello D, Ianora A, Budillon A, Romano G, Nuzzo G, D’Ippolito G, Fontana A, Costantini M (2018) Toxigenic effects of two benthic diatoms upon grazing activity of the sea urchin: morphological, metabolomic and de novo transcriptomic analysis. Sci Rep 8:5622

    Article  CAS  Google Scholar 

  • Saranya G, Subashchandran MD, Praksah M, Ramachandra TV (2018) Prioritization of prospective third-generation biofuel diatom strains. Energy Ecol Environ 3:338–354

    Article  Google Scholar 

  • Sathasivam R, Ki J-S (2018) A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs 16:26. https://doi.org/10.3390/md16010026

    Article  CAS  Google Scholar 

  • Satoru T, Hirata JA, Laws E (2007) Silicate deficiency and lipid synthesis of marine diatoms. (Chaetoceros gracilis; Hantzschia sp. ; Cyclotella sp). J Phycol 23:260–267

    Google Scholar 

  • Scragg A, Illman A, Carden A, Shales S (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23(1):67–73

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J Roessler P (1998) Look back at the U.S. Department of energy’s aquatic species program: biodiesel from microalgae; close-out report: size, 325 pages

    Google Scholar 

  • Shen Y, Yuan W, Pei Z, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52:1275–1287

    Article  Google Scholar 

  • Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi C-W, Chang J-S (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 2017(18):215–249

    Article  CAS  Google Scholar 

  • Sim TS, Goh A, Becker EW (1988) Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae. Biomass 16:51–62. https://doi.org/10.1016/0144-4565(88)90015-7

    Article  Google Scholar 

  • Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Syvertsen KE (2001) Optimizing fatty acid production in diatom Chaetoceros spp. by modifying growth environment. In: Biosystems engineering 2001, University of Hawaii at Minoa, Honolulu

    Google Scholar 

  • Trent J (2009) Wind sea microalgae. In: Trent J (ed) International workshop on offshore microalgae cultivation, Maribo, Denmark, April 20–22; Baltic Sea Solutions and STP Productions, Lolland, Denmark, p 274

    Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48(5):251–259

    Article  CAS  Google Scholar 

  • United Nations (2016) Framework convention on climate change. FCCC/CP/2015/10. URL http://unfccc.int/resource/docs

  • Wang J-K (2015) An absorbent and method of application for the treatment of heavy metal waste water. Chinene Patent, 201410072325

    Google Scholar 

  • Wang J-K, Seibert M (2017) Prospects for commercial production of diatoms. Biotechnol Biofuels 10:16. https://doi.org/10.1186/s13068-017-0699-y

    Article  CAS  Google Scholar 

  • Wang Z, Pan Y, Dong T, Zhu X, Kan T, Yuan L, Torimoto Y, Sadakata M, Li Q (2007) Production of hydrogen from catalytic steam reforming of bio- oil using C12A7-O-based catalysts. Appl Catal A 320:24–34

    Article  CAS  Google Scholar 

  • Wang K, Mandal A, Ayton E, Hunt† R, Zeller MA, Sharma S (2016) Modification of protein rich algal-biomass to form bioplastics and odor removal. In: Protein byproducts. https://doi.org/10.1016/B978-0-12-802391-4.00006-9

    Chapter  Google Scholar 

  • Wijffels R (2006) Energie via microbiologie: Status en toekomstperspectiefvoor Nederland. Utrecht, Senter Novem

    Google Scholar 

  • Wijffels R (2007) Presentation. Microalgae for production of energy. www.sciencedaily.com

  • Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  • Yang Z, Kong F, Yang Z, Zhang M, Yu Y, Qian S (2009) Benefits and costs of the grazer induced colony formation in Microcystis aeruginosa. Ann Limnol Int J Limnol 45:203–208. https://doi.org/10.1051/limn/2009020

    Article  Google Scholar 

  • Yeang K (2008) Biofuel from microalgae. Archit Des 78(3):118–119

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Department of Biotechnology, Ministry of Science and Technology, India, for research funding (BT/PR15650/AAQ/3/815/2016).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, A., Marella, T.K. (2020). Algal Biomass: Potential Renewable Feedstock for Biofuel Production. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V. (eds) Substrate Analysis for Effective Biofuels Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-32-9607-7_1

Download citation

Publish with us

Policies and ethics