Skip to main content

Nanobiotechnology for Agricultural Productivity, Food Security and Environmental Sustainability

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

Achieving sustainable development is one of the key challenges at present and also foremost priority to attain food security for the increasing population. Enormous dependency on agrochemicals has devastated net crop yield and has caused irreparable damage to our ecosystem. A novel and environmentally benign technology that can aid in improved yield and crop protection is a need of hour. Nanobiotechnology offers possible solutions to several key constraints of agricultural production systems, which is evident from the recent research developments. Nanomaterials are often considered to be ‘smart delivery systems’ and exhibit unique and varied functions; therefore, nanoparticle-mediated plant genetic engineering, nanofertilizers, nanopesticides and nanosensors find potential applications in agricultural systems, which could substantially contribute to sustainable agriculture. However, continuous efforts are underway to understand their economic and environment feasibility for wide usage. In this chapter, novel developments and innovations in the nanobiotechnology with relevance to agricultural productivity, food security and environmental sustainability have been broadly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas KA, Saleh AM, Mohamed A et al (2009) The recent advances in the nanotechnology and its applications in food processing: a review. J Food Agric Environ 7(3,4):14–17

    CAS  Google Scholar 

  • Abdel-Aziz H, Hasaneen MN, Omar A (2018) Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt J Bot 58(1):87–95

    Google Scholar 

  • Abdullaeva Z (2017) Nanomaterials in daily life – compounds, synthesis, processing and commercialization. Springer, Cham, pp 23–46

    Book  Google Scholar 

  • Adeleye AS, Conway JR, Perez T et al (2014) Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol 48:12561–12568

    Article  PubMed  CAS  Google Scholar 

  • Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety – review. Afr J Food Agric Nutr Dev 10(6):1–21

    Google Scholar 

  • Arkas M, Tsiourvas D, Paleos CM (2003) Functional dentrimeric “nanosponges” for the removal of polycyclic aromatic hydrocarbons from water. Chem Mater 15:2844–2847

    Article  CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148

    Article  CAS  Google Scholar 

  • Attar S, Ranveer A (2015) Carbon nanotubes and its environmental applications. J Environ Sci Comp Sci Eng Technol 4(2):6–7

    Google Scholar 

  • Azeredo HC, Mattoso LH, Wood DF et al (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74(5):N31–N35

    Article  PubMed  CAS  Google Scholar 

  • Benício LPF, Constantino VRL, Pinto FG et al (2017) Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustain Chem Eng 5(1):399–409

    Article  CAS  Google Scholar 

  • Bernardo MP, Guimarães GG, Majaron VF et al (2018) Controlled release of phosphate from layered double hydroxide structures: dynamics in soil and application as smart fertilizer. ACS Sustain Chem Eng 6(4):5152–5161

    Article  CAS  Google Scholar 

  • Bharali DJ, Klejbor I, Stachowiak EK et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A 102:11539–11544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhupinder SS (2010) Food nanotechnology – an overview. Nanotechnol Sci Appl 3(1):1–15

    Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager J et al (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419

    Article  PubMed  CAS  Google Scholar 

  • Buzby JC (2010) Nanotechnology for food applications: more questions than answers. J Consum Aff 44(3):528–545

    Article  Google Scholar 

  • Carbone M, Donia DT, Sabatella G et al (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28(4):273–279

    Article  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  CAS  Google Scholar 

  • Chellaram C, Murugaboopathi G, John AA et al (2014) Significance of nanotechnology in food industry. APCBEE Procedia 8:109–113

    Article  CAS  Google Scholar 

  • Chung I, Rajakumar G, Gomathi T et al (2017) Nanotechnology for human food: advances and perspective. Front Life Sci 10(1):4–7

    Article  CAS  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M et al (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91. https://doi.org/10.1038/nnano.2010.2

    Article  PubMed  CAS  Google Scholar 

  • Dhingra R, Naidu S, Upreti G et al (2010) Sustainable nanotechnology: through green methods and life-cycle thinking. Sustainability 2(10):3323–3328

    Article  Google Scholar 

  • Diallo MS, Balogh L, Shafagati A et al (2009) Poly(amidoamine)dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ Sci Technol 33:820–824

    Article  Google Scholar 

  • Diallo MS, Fromer NA, Jhon MS (2013) Nanotechnology for sustainable development: retrospective and outlook. J Nanopart Res 15:2044–2060

    Article  CAS  Google Scholar 

  • Diaz-Blancas V, Medina DI, Padilla-Ortega E et al (2016) Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules 21(10):1271–1283

    Article  PubMed Central  CAS  Google Scholar 

  • Donaldson K, Beswick P, Gilmour P (1996) Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett 88:293–298

    Article  PubMed  CAS  Google Scholar 

  • dos Santos MC, Kesler O, Reddy ALM (2012) Nanomaterials for energy conversion and storage. J Nanomater 2012:159249. https://doi.org/10.1155/2012/159249

    Article  CAS  Google Scholar 

  • Douroumis D (2011) Mesoporous silica nanoparticles as drug delivery system. J Nanomedic Nanotechnol 2(3):102. https://doi.org/10.4172/2157-7439.1000102e

    Article  CAS  Google Scholar 

  • Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77(1):3–5

    Article  PubMed  Google Scholar 

  • Dror I, Baram D, Berkowitz B (2005) Use of nanosized catalysts for transformation of chloro-organic pollutant. Environ Sci Technol 39:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 1(1):1–24

    Article  CAS  Google Scholar 

  • Ekinci M, Dursun A, Yildirim E et al (2014) Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus L.). Acta Sci Pol Hortic 13(3):135–141

    Google Scholar 

  • Everaert M, Warrinnier R, Baken S et al (2016) Phosphate-exchanged Mg–Al layered double hydroxides: a new slow release phosphate fertilizer. ACS Sustain Chem Eng 4(8):4280–4287

    Article  CAS  Google Scholar 

  • Fortner J, Lyon D, Sayes C et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Toxicol 39(11):4307–4316

    CAS  Google Scholar 

  • Gandhi G, Girgila PS, Aggarwal RK et al (2010) Propensity for DNA damage in psoriasis patients genotyped for two candidate genes. J Carcinog Mutagene 1(3):112–114

    Article  Google Scholar 

  • Gaur N, Bhardwaj V, Rathi M (2014) Health risks of engineered nanoparticles. Int J Curr Microbiol App Sci 3(7):132–147

    Google Scholar 

  • Gerloff K, Albrecht C, Boots AW et al (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3(4):355–364

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  PubMed  CAS  Google Scholar 

  • Goni FA, Shukor SA, Mukhtar M et al (2015) Environmental sustainability: research growth and trends. Adv Sci Lett 21(2):192–195

    Article  Google Scholar 

  • Guo H, White JC, Wang Z et al (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83

    Article  Google Scholar 

  • Hasaneen MNA, Abdel-Aziz HMM, El-Bialy DMA et al (2014) Preparation of chitosan nanoparticles for loading with NPK fertilizer. Afr J Biotechnol 13(31):3158–3164

    Article  CAS  Google Scholar 

  • He X, Huang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24(4):671–681

    Article  PubMed  CAS  Google Scholar 

  • Holsapple M, Farland W, Landry T et al (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges, and data needs. Toxicol Sci 88(1):12–17

    Article  PubMed  CAS  Google Scholar 

  • Hoppe PP, Krämer K, van den Berg H et al (2003) Synthetic and tomato-based lycopene have identical bioavailability in humans. Eur J Nutr 42(5):272–278

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Javorina A, Schrand A et al (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92(2):456–463

    Article  PubMed  CAS  Google Scholar 

  • Hussein MZ, Zainal Z, Yahaya AH et al (2002) Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn–Al-layered double hydroxide nanocomposite. J Control Release 82(2–3):417–427

    Article  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N et al (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317

    Article  PubMed  CAS  Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H et al (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518

    Article  PubMed  CAS  Google Scholar 

  • Junior CRF, Tanaka FN, Bortolin A et al (2018) Thermal and morphological characterization of highly porous nanocomposites for possible application in potassium controlled release. J Therm Anal Calorim 131(3):2205–2212

    Article  CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  PubMed  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K et al (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modelling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kah M, Kookana RS, Gogos A et al (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD et al (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  PubMed  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  PubMed  CAS  Google Scholar 

  • Kaushik P, Shakil NA, Kumar J et al (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48(8):677–685

    Article  PubMed  CAS  Google Scholar 

  • Kentish SE, Stevens GW (2001) Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J 84:149–159

    Article  CAS  Google Scholar 

  • Kessler R (2011) Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect 119(3):A120–A125

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Shim SB, Shim JK (2004) Comparison of amphiphilic polyurethane nanoparticles to non-ionic surfactants for flushing phenanthrene from soil. J Hazard Mater B 116:205–212

    Article  CAS  Google Scholar 

  • Kim SW, Kim KS, Lamsal K et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764

    PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE et al (2009) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  Google Scholar 

  • Kottegoda N, Sandaruwan C, Perera P et al (2014) Modified layered nanohybrid structures for the slow release of urea. Nanosci Nanotechnol – Asia 4(2):94–102

    CAS  Google Scholar 

  • Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53(10):7150–7164

    Article  CAS  Google Scholar 

  • Kuswandi B (2016) Nanotechnology in food packaging. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 1. Springer, Cham, pp 151–185

    Chapter  Google Scholar 

  • Landsdown ABG (2007) Critical observations on the neurotoxicity of silver. Crit Rev Toxicol 37(3):237–250

    Article  CAS  Google Scholar 

  • Lateef A, Nazir R, Jamil N et al (2016) Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Microporous Mesoporous Mater 232:174–183

    Article  CAS  Google Scholar 

  • León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F et al (2018) Design and production of nanofertilizers. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural nanobiotechnology. Springer, Cham, pp 17–31

    Chapter  Google Scholar 

  • Lobo AO, Marciano FR, Regiani I et al (2011) Influence of temperature and time for direct hydroxyapatite electrodeposition on superhydrophilic vertically aligned carbon nanotube films. J Nanomed Nanotechnol 6(8):277–285

    Google Scholar 

  • Long T, Saleh N, Tilton R et al (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Xia B, Liu C et al (2016) TiO2-based nanomaterials for advanced environmental and energy-related applications. J Nanomater 2016:8735620. https://doi.org/10.1155/2016/8735620

    Article  Google Scholar 

  • Mansoori GA, Bastami TR, Ahmadpour A et al (2008) Environmental application of nanotechnology. In: Guozhong C, Brinker CJ (eds) Annual review of nano research, vol 2. World Scientific, Singapore, pp 439–493

    Chapter  Google Scholar 

  • Marikar FMMT, Ilangakoon PIPW, Jaliya HKMN et al (2014) Sri Lankan medical undergraduates awareness of nanotechnology and its risks. Educ Res Int 2014:584352. https://doi.org/10.1155/2014/584352

    Article  Google Scholar 

  • Mikhak A, Sohrabi A, Kassaee MZ et al (2017) Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricaria chamomilla L.). Ind Crop Prod 95:444–452

    Article  CAS  Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893

    Article  CAS  Google Scholar 

  • Moraru CI, Panchapakesan CP, Huang Q et al (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29

    Google Scholar 

  • Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  PubMed  CAS  Google Scholar 

  • Ngomsik AF, Bee A, Draye M et al (2005) Magnetic nano- and microparticles for metal removal and environmental applications: a review. Water Res 8(6–7):963–970

    CAS  Google Scholar 

  • Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–1654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058–1062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Omanović-Mikličanin E, Maksimović M, Vinković-Vrček I et al (2016) Application of nanotechnology in food packaging. In: 5th workshop on specific methods for food safety and quality – proceedings, Vinca Institute of Nuclear Sciences, Belgrade, Serbia, pp 119–125

    Google Scholar 

  • Ong YT, Ahmad AL, Zein SHS et al (2010) A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz J Chem Eng 27(2):2–6

    Article  Google Scholar 

  • Pandey S, Giri K, Kumar R et al (2018) Nanopesticides: opportunities in crop protection and associated environmental risks. Proc Natl Acad Sci, India Sect B Biol Sci 88(4):1287–1308

    Article  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Park HS, Jeon BJ, Ahn J et al (2007) Effects of nanocalcium supplemented milk on bone calcium metabolism in ovariectomized rats. Asian-Aust J Anim Sci 20(8):1266–1271

    Article  CAS  Google Scholar 

  • Park IY, Kim IY, Yoo MK et al (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptormediated gene delivery. Int J Pharm 359:280–287

    Article  PubMed  CAS  Google Scholar 

  • Patil A, Chirmade UN, Slipper I et al (2011) Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. J Nanomedic Nanotechnol 2:111. https://doi.org/10.4172/2157-7439.1000111

    Article  CAS  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewyczc A et al (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Inno 5:10–21

    Article  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen Q (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8(1014):6–8

    Google Scholar 

  • Pyrgiotakis G, Vasanthakumar A, Gao Y et al (2015) Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS). Environ Sci Technol 49(6):3737–3745

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS et al (2009) Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev 2(1):39–50

    Article  Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C 27(1):4–5

    Article  CAS  Google Scholar 

  • Rosarin FS, Mirunalini S (2011) Nobel metallic nanoparticles with novel biomedical properties. J Bioanal Biomed 3:85–91

    Article  CAS  Google Scholar 

  • Roshanravan B, Soltani SM, Rashid SA et al (2015) Enhancement of nitrogen release properties of urea–kaolinite fertilizer with chitosan binder. Chem Speciat Bioavailab 27(1):44–51

    Article  CAS  Google Scholar 

  • Rouse JG, Yang J, Barron AR et al (2006) Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol In Vitro 20(8):1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Saini R, Saini S, Sharma S (2010) Nanotechnology: the future medicine. J Cutan Aesthet Surg 3(1):32–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3. https://doi.org/10.1186/1477-3155-2-3

    Article  Google Scholar 

  • Sardoiwala MN, Kaundal B, Choudhury SR (2018) Toxic impact of nanomaterials on microbes, plants and animals. Environ Chem Lett 16(1):147–160

    Article  CAS  Google Scholar 

  • Sastry KR, Shrivastava A, Rao NH (2013) Nanotechnology in food processing sector – an assessment of emerging trends. J Food Sci Technol 50(5):831–841

    Article  CAS  Google Scholar 

  • Shih MF, Wu CH, Cherng JY (2011) Bioeffects of transient and low-intensity ultrasound on nanoparticles for a safe and efficient DNA delivery. J Nanomedic Nanotechnol 6(2):276–282

    Google Scholar 

  • Simonin M, Colman BP, Tang W et al (2018) Plant and microbial responses to repeated Cu(OH)2 nanopesticide exposures under different fertilization levels in an agro-ecosystem. Front Microbiol 9:1769. https://doi.org/10.3389/fmicb.2018.01769

    Article  PubMed  PubMed Central  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H et al (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hort Fores 7(2):36–47

    Article  CAS  Google Scholar 

  • Songkhum P, Wuttikhun T, Chanlek N et al (2018) Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Appl Clay Sci 152:311–322

    Article  CAS  Google Scholar 

  • Srinivas PR, Philbert M, Vu TQ et al (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140(1):119–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su R, Nie S, Sun M et al (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25(4):363–376

    Article  PubMed  CAS  Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M et al (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 69–80

    Google Scholar 

  • Tan W, Gao Q, Deng C et al (2018) Foliar exposure of Cu(OH)2 nanopesticide to Basil (Ocimum basilicum): variety-dependent copper translocation and biochemical responses. J Agric Food Chem 66(13):3358–3366

    Article  PubMed  CAS  Google Scholar 

  • Tao S, Pang R, Chen C et al (2012) Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydr Polym 88(4):1189–1194

    Article  CAS  Google Scholar 

  • Tesh SJ, Scott TB (2016) Iron nanoparticles for water treatment: is the future free or fixed? In: Faivre D (ed) Iron oxides: from nature to applications. Wiley VCH, Berlin, pp 473–522

    Chapter  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  • Tothill EI (2011) Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J 4:351–374

    Article  CAS  Google Scholar 

  • Wamer W, Yin J, Wei R (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med 23:851–858

    Article  PubMed  CAS  Google Scholar 

  • Wang SL, Nguyen AD (2018) Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse. Res Chem Intermed 44(88):4889–4901

    Article  CAS  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Weiss R (2006) EPA to regulate products sold as germ killing. The Washington Post (23 November):A01

    Google Scholar 

  • Yamamoto CF, Pereira EI, Mattoso LH et al (2016) Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chem Eng J 287:390–397

    Article  CAS  Google Scholar 

  • Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Zhao L, Huang Y, Keller AA (2018) Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J Agric Food Chem 66(26):6628–6636

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sangeetha, J., Mundaragi, A., Thangadurai, D., Maxim, S.S., Pandhari, R.M., Alabhai, J.M. (2019). Nanobiotechnology for Agricultural Productivity, Food Security and Environmental Sustainability. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_1

Download citation

Publish with us

Policies and ethics