Skip to main content

Content Analysis of Conceptual Change Research and Practice in Science Education: From Localization to Globalization

  • Chapter
  • First Online:
Science Education Research and Practices in Taiwan

Abstract

This chapter reviews the current research on conceptual change in science education. The review includes research located in the DoRise system (Database of Research in Science Education) in Taiwan and articles published in selected international science education journals (Journal of Research in Science Teaching, Science Education, International Journal of Science Education, Research in Science Education, and International Journal of Science and Mathematics Education) between 1982 and 2012. Three hundred and eighty-three articles in the international journals (including 26 English papers from researchers in Taiwan) and eighty-six articles from Taiwan were analyzed (60 and 26 articles from Taiwanese and international journals, respectively). There are five major findings. First, most of the research follows the empirical approach, regardless of it being an international or national article. Second, physics was the main discipline examined both in the international and national studies. Third, about two thirds of the studies from outside of Taiwan used epistemological perspective to frame and present their study. A similar percentage of articles investigated the instructional perspective whereas nearly two thirds of the Taiwanese articles investigated the instructional perspective and only 28 % followed the epistemological perspective. Fourth, as for the research method, we found that qualitative data analysis was ranked first among all the methods we investigated whereas Taiwan appeared to integrate both quantitative and qualitative methods. Fifth, as expected, high percentages of published researchers were from English-speaking countries (i.e., the USA, Australia, and the UK). Taiwan was ranked third out of 31 countries with respect to the number of publications in this study from 1982 to 2012 but was the first non-English-speaking country. Recommendations for researchers and educators are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akerson, V. L., Abd-El-Khalick, F., & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers’ conceptions of nature of science. Journal of Research in Science Teaching, 37(4), 295–317.

    Article  Google Scholar 

  • Alzate, O. E. T., & Puig, N. S. (2007). High-school students’ conceptual evolution of the respiration concept from the perspective of Giere’s cognitive science model. International Journal of Science Education, 29(2), 215–248.

    Article  Google Scholar 

  • Beerenwinkel, A., Parchmann, I., & Cornelia, G. (2011). Conceptual change texts in chemistry teaching: A study on the particle model of matter. International Journal of Mathematics and Science Education, 9(5), 1235–1259.

    Article  Google Scholar 

  • Brown, D. E. (1992). Using examples and analogies to remediate misconceptions in physics—Factors influencing conceptual change. Journal of Research in Science Teaching, 29(1), 17–34.

    Article  Google Scholar 

  • Brown, D. E. (1994). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201–214.

    Article  Google Scholar 

  • Bryce, T., & MacMillan, K. (2005). Encouraging conceptual change: The use of bridging analogies in the teaching of action-reaction forces and the ‘at rest’ condition in physics. International Journal of Science Education, 27(6), 737–763.

    Article  Google Scholar 

  • Chang, C. Y., & Barufaldi, J. P. (1999). The use of a problem-solving-based instructional model in initiating change in students’ achievement and alternative frameworks. International Journal of Science Education, 21(4), 373–388.

    Article  Google Scholar 

  • Chang, M., Wang, C. Y., & Chen, G. D. (2009). National program for e-Learning in Taiwan. Educational Technology & Society, 12(1), 5–17.

    Google Scholar 

  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Minnesota studies in the philosophy of science (pp. 129–186).Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categories shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35–60). New York: Routledge.

    Google Scholar 

  • Chiu, M. H. (1993). Science textbooks and conceptual change. Science Education Monthly, 163, 2–8.

    Google Scholar 

  • Chiu, M. H. (2000). Reflections and implications of research on conceptual change. Chinese Journal of Science Education, 8(1), 1–34. (in Chinese)

    Google Scholar 

  • Chiu, M. H. (2007, July). Research and instruction-based/oriented work (RAINBOW) for conceptual change in science learning. Paper presented at the 2nd Network for Inter-Asian Chemistry Educators Symposium, Taipei, Taiwan.

    Google Scholar 

  • Chiu, M. H. (2012, 2.9., Principal Investigator). Minutes from National Science Council Special Interest Group on Conceptual Construction and Conceptual Change. Taipei, Taiwan.

    Google Scholar 

  • Chiu, M. H., & Chung, S. L. (2013). The use of multiple perspectives of conceptual change to investigate students’ mental models of gas particles. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matters in science education (pp. 143–168). The Netherlands: Springer.

    Google Scholar 

  • Chiu, M. H., & Duit, R. (2011). Globalization: Science education in an international perspective. Journal of Research in Science Teaching, 48(6), 553–566.

    Article  Google Scholar 

  • Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders’ conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429–464.

    Article  Google Scholar 

  • Chiu, M. H., & Lin, J. W. (2008). Research on learning and teaching of students’ conception in science: A cognitive approach review. In Ingrid V. Eriksson (Ed.), Science education in the 21st century (pp. 291–316). New York: Nova Science Publishers.

    Google Scholar 

  • Chiu, M. H., & Wu, W. L. (2013). A novel approach for investigating students’ learning progression for the concept of phase transitions. Education Quimica (Special Issue on Learning Progressions in Chemistry), 24(4), 373–380.

    Google Scholar 

  • Chiu, M. H., Chou, C. C., & Liu, C. J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688–712.

    Article  Google Scholar 

  • Chiu, M. H., Gou, G. J., & Treagust, D. F. (2007). Assessing students’ conceptual understanding in science: An introduction about a national project in Taiwan. International Journal of Science Education, 29(4), 379–390.

    Article  Google Scholar 

  • Cohen, L., & Manion, L. (2000). Research methods in education (5th ed.). London: Routhledge.

    Book  Google Scholar 

  • diSessa, A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225.

    Article  Google Scholar 

  • diSessa, A. A. (2008). A bird’s-eye view of the “pieces” vs. “coherence” controversy (from the “pieces” side of the fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35–60). New York: Routledge.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.

    Article  Google Scholar 

  • Duit, R., & Treagust, D. F. (2012). How can conceptual change contribute to theory and practice in science education? In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 107–118). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Gunstone, R. F. (1990). Children’s science: A decade of developments in constructivist views of teaching and learning. Australian Science Teachers Journal, 36(4), 9–19.

    Google Scholar 

  • Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731–743.

    Article  Google Scholar 

  • Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change. International Journal Science Education. 11(special issue), 541–553.

    Google Scholar 

  • Hsu R. F. (1992). The nature and evaluation modes in measuring hypotheses formulating skill. Journal of National Taiwan Normal University, 37, 395–457. (in Chinese)

    Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: The University of Chicago.

    Google Scholar 

  • Liang, J. C., Chou, C. C., & Chiu, M. H. (2011). Student test performances on behavior of gas particles and mismatch of teacher predictions. Chemistry Education Research and Practice, 12, 238–250.

    Article  Google Scholar 

  • Lin, J. W. (2008). A comparison study between the coherence of across-grade students’ mental models in electricity and curriculum sequence. Journal of Education & Psychology, 31(3), 53–79.

    Google Scholar 

  • Lin, J. W., & Chiu, M. H. (2009). An across-grade study to investigate the evolutionary processes of students’ cognitive characters in series connection. Journal of Research in Education Sciences, 54(4), 139–170.

    Google Scholar 

  • Lin, T. C., Lin, T. J., & Tsai, C. C. (2014) Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36(8), 1346–1372.

    Article  Google Scholar 

  • Linn, M. C. (2008). Teaching for conceptual change: Distinguish or extinguish ideas. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 694–718). New York: Routledge.

    Google Scholar 

  • Margel, H., Eylon, B. S., & Scherz, Z. (2008). A longitudinal study of junior high school students’ conceptions of the structure of materials. Journal of Research in Science Teaching, 45(1), 132–152.

    Article  Google Scholar 

  • Pintrich, P.R., Marx, R.W., & Boyle, R.A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Education & Educational Research, 63(2), 167–199.

    Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Schnotz, W., Vosniadou, S., & Carretero, M. (1999). New perspectives on conceptual change. Amsterdam: Pergamon.

    Google Scholar 

  • Shen, J., & Confrey, J. (2007). From conceptual change to transformative modeling: A case study of an elementary teacher in learning astronomy. Science Education, 91(6), 948–966.

    Article  Google Scholar 

  • Stenhouse, D. (1986). Conceptual change in science-education—paradigms and language-games. Science Education, 70(4), 413–425.

    Article  Google Scholar 

  • Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice. Albany: State University of New York Press.

    Google Scholar 

  • Terry, C., & Jones, G. (1986). Alternative frameworks: Newton’s third law and conceptual change. European Journal of Science Education, 8(3), 291–298.

    Article  Google Scholar 

  • Thagard, P. (1992). Conceptual revolution. NJ: Princeton University.

    Google Scholar 

  • Treagust, D., & Duit, R. (2008). Conceptual change: A discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3, 297–328.

    Article  Google Scholar 

  • Tsai, C. C. (2000). Enhancing science instruction: The use of conflict maps. International Journal of Science Education, 22(3), 285–302.

    Article  Google Scholar 

  • Tsai, C. C. (2003). Using a conflict map as an instructional tool to change student alternative conceptions in simple series electric-circuits. International Journal of Science Education, 25(3), 307–327.

    Article  Google Scholar 

  • Tsui, C. Y., & Treagust, D. F. (2010). Evaluating secondary students’ scientific reasoning in genetics using a two-tier diagnostic instrument. International Journal of Science Education, 32(8), 1073–1098.

    Article  Google Scholar 

  • Venville, G. J., Louisell, R. D., & Wilhelm, J. A. (2012). Young children’s knowledge about the moon: A complex dynamic system. Research in Science Education, 42, 729–752.

    Article  Google Scholar 

  • Vosniadou, S. (Ed.). (1994). Capturing and modeling the process of conceptual change. In S. Vosniadou (Guest Ed.), Special issue on conceptual change, learning and instruction (4th ed., 45–69).

    Google Scholar 

  • Vosniadou, S. (2008, Ed.). International Handbook of Research on Conceptual Change. NY: Routledge.

    Google Scholar 

  • Vosniadou, S. (2013, Ed.). International Handbook of Research on Conceptual Change. NY: Routledge.

    Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535–585.

    Google Scholar 

  • Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20(10), 1213–1230.

    Article  Google Scholar 

  • Wang, T. H., Chiu, M. H., Lin, J. W., & Chou, C. C. (2013). Diagnosing students’ mental models via the web-based mental models diagnosis (WMMD) system. British Journal of Educational Technology, 44(2), E45–E48

    Article  Google Scholar 

  • West, L. H. T., & Pines, A. L. (1983). How “rational” is rationality? Science Education, 67(1), 37–39.

    Article  Google Scholar 

  • World Population Review. (2014). http://worldpopulationreview.com/. Accessed 12 Dec 2004.

  • Zembal-Saul, C., Munford, D., Crawford, B., Friedrichsen, P., & Land, S. (2002). Scaffolding preservice science teachers’ evidence-based arguments during an investigation of natural selection. Research in Science Education, 32(24), 437–463.

    Article  Google Scholar 

  • Zietsman, A. I., & Hewson, P. W. (1986). Effect of instruction using microcomputer simulations and conceptual change strategies on science learning. Journal of Research in Science Teaching, 23(1), 27–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Hung Chiu .

Editor information

Editors and Affiliations

Appendices

Appendices

Appendix A. The distribution of empirical and nonempirical international and national publications by science education researchers in Taiwan from 1982 to 2012

 

1982–1987

1988–1992

1993–1997

1998–2002

2003–2007

2008–2012

Total

TIJ (n = 26)

Empirical

0

(0.0)

0

(0.0)

0

(0.0)

7

(26.9)

8

(30.8)

11

(42.3)

26

(100.0)

Nonempirical

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

TJ (n = 60)

Empirical

0

(0.0)

1

(1.7)

5

(8.3)

12

(20.0)

16

(26.7)

9

(15.0)

43

(71.7)

Nonempirical

0

(0.0)

0

(0.0)

7

(11.7)

4

(6.7)

3

(5.0)

3

(5.0)

17

(28.3)

Total (n = 86)

Empirical

0

(0.0)

1

(1.2)

5

(5.8)

19

(22.1)

24

(27.9)

20

(23.3)

69

(80.2)

Nonempirical

0

(0.0)

0

(0.0)

7

(8.1)

4

(4.7)

3

(3.5)

3

(3.5)

17

(19.8)

Appendix B. The distribution of science disciplines of articles by science education researchers in Taiwan from 1982 to 2012

 

Time interval

1982–1987

1988–1992

1993–1997

1998–2002

2003–2007

2008–2012

Subtotal

TIJ

(n = 26)

1. Physics

      

1

(3.8)

3

(11.5)

2

(7.7)

6

(23.1)

2. Chemistry

      

1

(3.8)

3

(11.5)

5

(19.2)

9

(34.6)

3. Biology

      

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

4. Earth science

      

2

(7.7)

0

(0.0)

2

(7.7)

4

(15.4)

5. Cross-domain

      

1

(3.8)

0

(0.0)

0

(0.0)

1

(3.8)

6. Others

      

2

(7.7)

2

(7.7)

2

(7.7)

6

(23.1)

7. NA

      

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

Subtotal

      

7

(26.9)

8

(30.8)

11

(42.3)

  

TJ

(n = 60)

1. Physics

  

0

(0.0)

4

(6.7)

7

(11.7)

5

(8.3)

8

(13.3)

24

(40.0)

2. Chemistry

  

0

(0.0)

0

(0.0)

1

(1.7)

5

(8.3)

0

(0.0)

6

(10.0)

3. Biology

  

0

(0.0)

0

(0.0)

3

(5.0)

2

(3.3)

1

(1.7)

6

(10.0)

4. Earth science

  

0

(0.0)

3

(5.0)

2

(3.3)

3

(5.0)

1

(1.7)

9

(15.0)

5. Cross-domain

  

0

(0.0)

0

(0.0)

0

(0.0)

2

(3.3)

0

(0.0)

2

(3.3)

6. Others

  

0

(0.0)

0

(0.0)

2

(3.3)

2

(3.3)

2

(3.3)

6

(10.0)

7. NA

  

1

(1.7)

5

(8.3)

3

(5.0)

0

(0.0)

0

(0.0)

9

(15.0)

Subtotal

  

1

(1.7)

12

(20.0)

18

(30.0)

19

(31.7)

12

(20.0)

  

Appendix C. The distribution of conceptual framework of articles by science education researchers in Taiwan from 1982 to 2012

 

Time Interval

1982–1987

1988–1992

1993–1997

1998–2002

2003–2007

2008–2012

Subtotal

TIJ

(n = 26)

1. Epistemology

      

3

(11.5)

3

(11.5)

5

(19.2)

11

(42.3)

2. Ontology

      

3

(11.5)

0

(0.0)

1

(3.8)

4

(15.4)

3. Affection/social

      

0

(0.0)

1

(3.8)

1

(3.8)

2

(7.7)

4. Development

      

0

(0.0)

0

(0.0)

1

(3.8)

1

(3.8)

5. Evolution

      

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

6. Instruction

      

6

(23.1)

4

(15.4)

7

(26.9)

17

(65.4)

7. Multiple dimensions

      

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

8. Others

      

0

(0.0)

3

(11.5)

1

(3.8)

4

(15.4)

Subtotal

      

12

(46.2)

11

(42.3)

16

(61.5)

  

TJ

(n = 60)

1. Epistemology

  

1

(1.7)

6

(10.0)

3

(5.0)

5

(8.3)

3

(5.0)

18

(30.0)

2. Ontology

  

0

(0.0)

1

(1.7)

0

(0.0)

3

(5.0)

1

(1.7)

5

(8.3)

3. Affection/social

  

0

(0.0)

0

(0.0)

1

(1.7)

0

(0.0)

0

(0.0)

1

(1.7)

4. Development

  

0

(0.0)

0

(0.0)

2

(3.3)

1

(1.7)

0

(0.0)

3

(5.0)

5. Evolution

  

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

1

(1.7)

1

(1.7)

6. Instruction

  

0

(0.0)

8

(13.3)

14

(23.3)

12

(20.0)

9

(15.0)

43

(71.7)

7. Multiple dimensions

  

0

(0.0)

1

(1.7)

2

(3.3)

1

(1.7)

0

(0.0)

4

(6.7)

8. Others

  

0

(0.0)

2

(3.3)

0

(0.0)

1

(1.7)

1

(1.7)

4

(6.7)

Subtotal

  

1

(1.7)

18

(30.0)

22

(36.7)

23

(38.3)

15

(25.0)

  

Appendix D. The distribution of data collection methods of articles by science education researchers from 1982 to 2012

 

Time interval

1982–1987

1988–1992

1993–1997

1998–2002

2003–2007

2008–2012

Subtotal

TIJ

(n = 26)

1. Qualitative

      

0

(0.0)

2

(7.7)

3

(11.5)

5

(19.2)

2. Quantitative

      

3

(11.5)

2

(7.7)

3

(11.5)

8

(30.8)

3. Both (1) and (2)

      

4

(15.4)

2

(7.7)

2

(7.7)

8

(30.8)

4. Quantifying the qualitative data

      

0

(0.0)

3

(11.5)

5

(19.2)

8

(30.8)

5. NA

      

0

(0.0)

0

(0.0)

1

(3.8)

1

(3.8)

Subtotal

      

7

(26.9)

9

(34.6)

14

(53.8)

  

TJ

(n = 60)

1. Qualitative

  

0

(0.0)

1

(1.7)

5

(8.3)

3

(5.0)

1

(1.7)

10

(16.7)

2. Quantitative

  

1

(1.7)

0

(0.0)

4

(6.7)

6

(10.0)

1

(1.7)

12

(20.0)

3. Both (1) and (2)

  

0

(0.0)

4

(6.7)

3

(5.0)

8

(13.3)

7

(11.7)

22

(36.7)

4. Quantifying the qualitative data

  

0

(0.0)

1

(1.7)

0

(0.0)

5

(8.3)

2

(3.3)

8

(13.3)

5. NA

  

0

(0.0)

7

(11.7)

4

(6.7)

3

(5.0)

2

(3.3)

16

(26.7)

Subtotal

  

1

(1.7)

13

(21.7)

16

(26.7)

25

(41.7)

13

(21.7)

  

Appendix E. The distribution of data collection methods of articles by science education researchers from 1982 to 2012

 

Time interval

1982–1987

1988–1992

1993–1997

1998–2002

2003–2007

2008–2012

Subtotal

TIJ

(n = 26)

1. Paper and pencil test

      

5

(19.2)

4

(15.4)

4

(15.4)

13

(50.0)

2. Interview

      

5

(19.2)

5

(19.2)

6

(23.1)

16

(61.5)

3. Drawing

      

1

(3.8)

0

(0.0)

1

(3.8)

2

(7.7)

4. Online data

      

0

(0.0)

0

(0.0)

1

(3.8)

1

(3.8)

5. Questionnaire

      

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

6. Online questionnaire

      

0

(0.0)

0

(0.0)

1

(3.8)

1

(3.8)

7. Rubric or coding sheet of classroom observation

      

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

8. Biological data

      

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

9. Others

      

3

(11.5)

2

(7.7)

4

(15.4)

9

(34.6)

10. NA

      

0

(0.0)

0

(0.0)

1

(3.8)

1

(3.8)

Subtotal

      

14

(53.8)

11

(42.3)

18

(69.2)

  

TJ

(n = 60)

1. Paper and pencil test

  

1

(1.7)

4

(6.7)

7

(11.7)

13

(21.7)

8

(13.3)

33

(55.0)

2. Interview

  

0

(0.0)

4

(6.7)

6

(10.0)

15

(25.0)

6

(10.0)

31

(51.7)

3. Drawing

  

0

(0.0)

0

(0.0)

0

(0.0)

1

(1.7)

2

(3.3)

3

(5.0)

4. Online data

  

0

(0.0)

0

(0.0)

1

(1.7)

1

(1.7)

0

(0.0)

2

(3.3)

5. Questionnaire

  

0

(0.0)

0

(0.0)

1

(1.7)

0

(0.0)

0

(0.0)

1

(1.7)

6. Online questionnaire

  

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

7. Rubric or coding sheet of classroom observation

  

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

8. Biological data

  

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

9. Others

  

0

(0.0)

1

(1.7)

2

(3.3)

2

(3.3)

2

(3.3)

7

(11.7)

10. NA

  

0

(0.0)

7

(11.7)

4

(6.7)

3

(5.0)

2

(3.3)

16

(26.7)

Subtotal

  

1

(1.7)

16

(26.7)

21

(35.0)

35

(58.3)

20

(33.3)

  

Appendix F. The distribution of teaching or nonteaching studies by science education researchers in Taiwan from 1982 to 2012

 

Time interval

1982–1987

1988–1992

1993–1997

1998–2002

2003–2007

2008–2012

Subtotal

TIJ

(n = 26)

Articles related to teaching

0

(0.0)

0

(0.0)

0

(0.0)

6

(23.1)

6

(23.1)

7

(26.9)

19

(73.1)

NA

0

(0.0)

0

(0.0)

0

(0.0)

1

(3.8)

2

(7.7)

4

(15.4)

7

(26.9)

Total

0

(0.0)

0

(0.0)

0

(0.0)

7

(26.9)

8

(30.8)

11

(42.3)

26

(100.0)

NT (n = 60)

Articles related to teaching

0

(0.0)

0

(0.0)

2

(3.3)

13

(21.7)

16

(26.7)

8

(13.3)

39

(65.0)

NA

0

(0.0)

1

(1.7)

8

(13.3)

5

(8.3)

3

(5.0)

4

(6.7)

21

(35.0)

Total

0

(0.0)

1

(1.7)

10

(16.7)

18

(30.0)

19

(31.7)

12

(20.0)

60

(100.0)

Appendix G. The distribution of teaching strategies of articles by science education researchers in Taiwan from 1982 to 2012

 

Time interval

1982–1987

1988–1992

1993–1997

1998–2002

2003–2007

2008–2012

Subtotal

TIJ

(n = 19)

1. Analogy, model and modeling

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

1

(5.3)

1

(5.3)

2

(10.5)

2. Multimedia

0

(0.0)

0

(0.0)

0

(0.0)

1

(5.3)

0

(0.0)

5

(26.3)

6

(31.6)

3. Conceptual conflict

0

(0.0)

0

(0.0)

0

(0.0)

2

(10.5)

3

(15.8)

2

(10.5)

7

(36.8)

4. Inquiry

0

(0.0)

0

(0.0)

0

(0.0)

1

(5.3)

1

(5.3)

0

(0.0)

2

(10.5)

5. Cooperative learning

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

6. Experiment

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

1

(5.3)

0

(0.0)

1

(5.3)

7. Text

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

8. Multiple representation

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

9. Argumentation

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

10. Concept map

0

(0.0)

0

(0.0)

0

(0.0)

1

(5.3)

0

(0.0)

0

(0.0)

1

(0.0)

11. Science history

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

12. Metacognitive approach

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

13. Writing

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

14. Constructivist approach

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

15. Self-explanation

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

16. Motivation

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

1

(5.3)

1

(5.3)

17. Others

0

(0.0)

0

(0.0)

0

(0.0)

2

(10.5)

0

(0.0)

1

(5.3)

3

(15.8)

Total

0

(0.0)

0

(0.0)

0

(0.0)

7

(36.8)

6

(31.6)

10

(52.6)

23

(121.1)

TJ

(n = 39)

1. Analogy, model and modeling

0

(0.0)

0

(0.0)

1

(2.6 )

3

(7.7)

2

(5.1)

1

(2.6)

7

(17.9)

2. Multimedia

0

(0.0)

0

(0.0)

0

(0.0)

3

(7.7)

2

(5.1)

1

(2.6)

6

(15.4)

3. Conceptual conflict

0

(0.0)

0

(0.0)

0

(0.0)

2

(5.1)

3

(7.7)

0

(0.0)

5

(12.8)

4. Inquiry

0

(0.0)

0

(0.0)

0

(0.0)

1

(2.6)

3

(7.7)

1

(0.0)

5

(12.8)

5. Cooperative learning

0

(0.0)

0

(0.0)

0

(0.0)

1

(2.6)

1

(2.6)

0

(0.0)

2

(5.1)

6. Experiment

0

(0.0)

0

(0.0)

0

(0.0)

1

(2.6)

1

(2.6)

0

(0.0)

2

(5.1)

7. Text

0

(0.0)

0

(0.0)

2

(5.1)

0

(0.0)

0

(0.0)

0

(0.0)

2

(5.1)

8. Multiple representation

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

9. Argumentation

0

(0.0)

0

(0.0)

0

(0.0)

2

(5.1)

0

(0.0)

0

(0.0)

2

(5.1)

10. Concept map

0

(0.0)

0

(0.0)

0

(0.0)

3

(7.7)

1

(2.6)

1

(2.6)

5

(12.8)

11. Science history

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

2

(5.1)

2

(5.1)

12. Metacognitive approach

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

13. Writing

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

14. Constructivist approach

0

(0.0)

0

(0.0)

0

(0.0)

1

(2.6)

0

(0.0)

0

(0.0)

1

(2.6)

15. Self-explanation

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

16. Motivation

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

17. Others

0

(0.0)

0

(0.0)

1

(2.6)

2

(5.1)

7

(17.9)

2

(5.1)

12

(30.8)

Total

0

(0.0)

0

(0.0)

4

(10.3)

19

(48.7)

20

(51.3)

8

(20.5)

51

(130.8)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chiu, MH., Lin, JW., Chou, CC. (2016). Content Analysis of Conceptual Change Research and Practice in Science Education: From Localization to Globalization. In: Chiu, MH. (eds) Science Education Research and Practices in Taiwan. Springer, Singapore. https://doi.org/10.1007/978-981-287-472-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-472-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-471-9

  • Online ISBN: 978-981-287-472-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics