Skip to main content

The Ecology of Reactive Oxygen Species Signalling

  • Chapter
  • First Online:
Reactive Oxygen Species

Abstract

In the environment, plant growth is affected and controlled by various biotic and abiotic factors. The global climatic factors and abiotic stressors such as extreme temperatures, salinity, droughts, and heavy metal contamination have all had a significant impact on plant growth and development, influencing crop output and quality, as well as agriculture’s long-term viability. Abiotic stress causes plant cells to create oxygen radicals and their derivatives, known as reactive oxygen species (ROS). Furthermore, in higher plants, the creation of ROS is a critical mechanism that transfers cellular signalling information in response to changing environmental circumstances. Abiotic stress disrupts the equilibrium between ROS production and antioxidant defence mechanisms, causing excessive ROS to build up and oxidative stress in plants. Plants under stress can even maintain the balance between detoxification and ROS generation that is controlled by the enzymatic and non-enzymatic defence systems. Despite the high level of interest in this field, it is relatively unexplored, and our understanding of ROS signalling is limited. The harmful effects of ROS, antioxidant defence systems involved in ROS detoxification under various abiotic stresses, and molecular crosstalk with other important signalling molecules such as reactive nitrogen, sulphur, and carbonyl species will all be discussed in this chapter. Furthermore, cutting-edge molecular strategies for ROS-mediated enhancement of plant antioxidant defence during abiotic stress adaption will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Akter S, Fu L, Jung Y, Conte ML, Lawson JR, Lowther WT et al (2018) Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nat Chem Biol 14(11):995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertos P et al (2021) Redox feedback regulation of ANAC089 signaling alters seed germination and stress response. Cell Rep 35:109263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signaling transduction. Annu Rev Plant Biol 55:373

    Article  CAS  PubMed  Google Scholar 

  • Baba AI, Andrási N, Valkai I, Gorcsa T, Koczka L, Darula Z et al (2019) AtCRK5 protein kinase exhibits a regulatory role in hypocotyl hook development during skotomorphogenesis. Int J Mol Sci 20(14):3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babbar R, Karpinska B, Grover A, Foyer CH (2021) Heat-induced oxidation of the nuclei and cytosol. Front Plant Sci 11:617779

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu D, Haswell ES (2020) The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Curr Biol 30(14):2716–2728

    Article  CAS  PubMed  Google Scholar 

  • Bender KW, Wang X, Cheng GB, Kim HS, Zielinski RE, Huber SC (2015) Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro. Biochem J 467:399–413

    Article  CAS  PubMed  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman JF et al (2019) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    Article  CAS  Google Scholar 

  • Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Bizzozero OA (2009) Protein carbonylation in neurodegenerative and demyelinating CNS diseases. In: Handbook of neurochemistry and molecular neurobiology. Springer, New York

    Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inzé D, Asada K (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13(3):199–218

    Article  CAS  Google Scholar 

  • Bratt A, Rosenwasser S, Meyer A, Fluhr R (2016) Organelle redox autonomy during environmental stress. Plant Cell Environ 39(9):1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Brot N, Weissbach H (1982) The biochemistry of methionine sulfoxide residues in proteins. Trends Biochem Sci 7(4):137–139

    Article  CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300(2):535–543

    Article  CAS  PubMed  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275(35):27393–27398

    Article  CAS  PubMed  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. Abiotic and biotic stress in plants-recent advances and future perspectives 17:463–480

    Google Scholar 

  • Chan KX, Mabbitt PD, Phua SY, Mueller JW, Nisar N, Gigolashvili T et al (2016) Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Proc Natl Acad Sci 113(31):E4567–E4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbonnel C, Niazi AK, Elvira-Matelot E, Nowak E, Zytnicki M, de Bures A et al (2017) The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain. Nucleic Acids Res 45(20):11891–11907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Yin G, Börner A, Xin X, He J, Nagel M et al (2018) Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance. Plant Physiol Biochem 130:455–463

    Article  CAS  PubMed  Google Scholar 

  • Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83(5):926–939

    Article  CAS  PubMed  Google Scholar 

  • D’alessandro S, Ksas B, Havaux M (2018) Decoding β-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. Plant Cell 30(10):2495–2511

    Article  PubMed  PubMed Central  Google Scholar 

  • Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A et al (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci 112(11):E1392–E1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24(1):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262(20):9895–9901

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139(2):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Clercq I, Van de Velde J, Luo X, Liu L, Storme V, Van Bel M et al (2021) Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nat Plants 7(4):500–513

    Article  PubMed  Google Scholar 

  • De Smet B, Willems P, Fernandez-Fernandez AD, Alseekh S, Fernie AR, Messens J, Van Breusegem F (2019) In vivo detection of protein cysteine sulfenylation in plastids. Plant J 97(4):765–778

    Article  PubMed  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15(9):2181–2191

    Article  PubMed  PubMed Central  Google Scholar 

  • Devireddy AR, Arbogast J, Mittler R (2020a) Coordinated and rapid whole-plant systemic stomatal responses. New Phytol 225(1):21

    Article  PubMed  Google Scholar 

  • Devireddy AR, Liscum E, Mittler R (2020b) Phytochrome B is required for systemic stomatal responses and reactive oxygen species signaling during light stress. Plant Physiol 184(3):1563–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson PJ, Kumar M, Martinho C, Yoo SJ, Lan H, Artavanis G et al (2018) Chloroplast signaling gates thermotolerance in Arabidopsis. Cell Rep 22(7):1657–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71(4):338–350

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M (1993) Chemistry of free radical damage to DNA and nucleoproteins. In: DNA and free radicals. Ellis Horwood, New York, pp 19–39

    Google Scholar 

  • Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C et al (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23(11):3992–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res/Rev Mutat Res 567(1):1–61

    Article  CAS  Google Scholar 

  • Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  • Fichman Y, Zandalinas SI, Sengupta S, Burks D, Myers RJ Jr, Azad RK, Mittler R (2020) MYB30 orchestrates systemic reactive oxygen signaling and plant acclimation. Plant Physiol 184(2):666–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichman Y, Mittler R (2020) Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant J 102(5):887–896

    Article  CAS  PubMed  Google Scholar 

  • Fink SP, Reddy GR, Marnett LJ (1997) Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc Natl Acad Sci 94(16):8652–8657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finka A, Cuendet AFH, Maathuis FJ, Saidi Y, Goloubinoff P (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24(8):3333–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N et al (2009) The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21(7):2143–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266(3):1478–1483

    Article  CAS  PubMed  Google Scholar 

  • Giesguth M, Sahm A, Simon S, Dietz KJ (2015) Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett 589(6):718–725

    Article  CAS  PubMed  Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SA, Rudaz S, Wolfender JL, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284(50):34506–34513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong H, Jiao Y, Hu WW, Pua EC (2005) Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol 57(1):53–66

    Article  CAS  PubMed  Google Scholar 

  • Goraya GK, Asthir B (2016) Magnificant role of intracellular reactive oxygen species production and its scavenging encompasses downstream processes. J Plant Biol 59(3):215–222

    Article  CAS  Google Scholar 

  • Griesser E, Vemula V, Raulien N, Wagner U, Reeg S, Grune T, Fedorova M (2017) Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress. Redox Biol 11:438–455

    Article  CAS  PubMed  Google Scholar 

  • Griffin JHC, Prado K, Sutton P, Toledo-Ortiz G (2020) Coordinating light responses between the nucleus and the chloroplast, a role for plant cryptochromes and phytochromes. Physiol Plant 169(4):515–528

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11(7):526–534

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species its mechanism and measurement in mammalian systems. FEBS Lett 281(1–2):9–19

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, Oxford

    Book  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Oxford University Press, Oxford. Google Scholar, 1-81

    Google Scholar 

  • Han C, Liu Q, Yang Y (2009) Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regul 58(2):153–162

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Alam M, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Res Int 2014:757219

    Article  PubMed  PubMed Central  Google Scholar 

  • He H, Denecker J, Van Der Kelen K, Willems P, Pottie R, Phua SY et al (2021) The Arabidopsis mediator complex subunit 8 regulates oxidative stress responses. Plant Cell 33(6):2032–2057

    Article  PubMed  PubMed Central  Google Scholar 

  • Hipsch M, Lampl N, Zelinger E, Barda O, Waiger D, Rosenwasser S (2021) Sensing stress responses in potato with whole-plant redox imaging. Plant Physiol 187(2):618–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain M, Asada K (1987) Ascorbate-regenerating enzymes in chloroplasts. Indian J Biochem Biophys 24(5):52–56

    Google Scholar 

  • Hu WH, Song XS, Shi K, Xia XJ, Zhou YH, Yu JQ (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46(4):581–588

    Article  CAS  Google Scholar 

  • Hu Y, Wu Q, Peng Z, Sprague SA, Wang W, Park J et al (2017) Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Sci Rep 7(1):1–14

    Article  Google Scholar 

  • Huang J, Willems P, Wei B, Tian C, Ferreira RB, Bodra N et al (2019) Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci 116(42):21256–21261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lázaro JJ (2011) The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin. Plant Physiol 155(2):944–955

    Article  CAS  PubMed  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R (2016) The evolution of reactive oxygen species metabolism. J Exp Bot 67(21):5933

    Article  CAS  PubMed  Google Scholar 

  • Iyer NJ, Jia X, Sunkar R, Tang G, Mahalingam R (2012) microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana. Plant Signal Behav 7(4):484–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabłońska J, Tawfik DS (2021) The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat Ecol Evol 5(4):442–448

    Article  PubMed  Google Scholar 

  • Jacques S, Ghesquière B, De Bock PJ, Demol H, Wahni K, Willems P et al (2015) Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress [S]. Mol Cell Proteomics 14(5):1217–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A (2018) Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci 9:1387

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan B, Bhat TA, Sheikh TA, Wani OA, Bhat MA, Nazir A et al (2020) Agronomic bio-fortification of rice and maize with iron and zinc: a review. Int Res J Pure Appl Chem 21:28–37

    Article  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Shabala S, Massart A, Poschenrieder C, Rengel Z (2015) The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. J Exp Bot 66(7):1865–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez A, Hernandez JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354(6314):886–889

    Article  CAS  PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist LÅ (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701

    Article  CAS  PubMed  Google Scholar 

  • Kámán-Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M (2019) Contribution of cell wall peroxidase-and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. Mol Plant Pathol 20(4):485–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpinska B, Karlsson M, Schinkel H, Streller S, Suss KH, Melzer M, Wingsle G (2001) A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation, and protein localization. Plant Physiol 126(4):1668–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284(5414):654–657

    Article  CAS  PubMed  Google Scholar 

  • Kerchev P, Waszczak C, Lewandowska A, Willems P, Shapiguzov A, Li Z et al (2016) Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2-deficient Arabidopsis. Plant Physiol 171(3):1704–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koffler BE, Bloem E, Zellnig G, Zechmann B (2013) High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron 45:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König K, Vaseghi MJ, Dreyer A, Dietz KJ (2018) The significance of glutathione and ascorbate in modulating the retrograde high light response in Arabidopsis thaliana leaves. Physiol Plant 162(3):262–273

    Article  PubMed  Google Scholar 

  • Lee ES, Park JH, Wi SD, Kang CH, Chi YH, Chae HB et al (2021) Redox-dependent structural switch and CBF activation confer freezing tolerance in plants. Nat Plants 7(7):914–922

    Article  CAS  PubMed  Google Scholar 

  • Leferink NG, van Duijn E, Barendregt A, Heck AJ, van Berkel WJ (2009) Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C. Plant Physiol 150(2):596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354(6314):897–900

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Sell S, Müller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Li YY, Zhou ZC, Xiang X, Liu X, Wang J et al (2021b) Tobacco transcription factor bHLH123 improves salt tolerance by activating NADPH oxidase NtRbohE expression. Plant Physiol 186(3):1706–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Chen T, Yin X, Xiang G, Peng J, Fu Q et al (2021a) A Plasmopara viticola RXLR effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. Plant J 106(6):1557–1570

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Van Staden J, Cress WA (2000) Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max (L.)) roots. Plant Growth Regul 30(1):49–54

    Article  CAS  Google Scholar 

  • Lu T, Meng Z, Zhang G, Qi M, Sun Z, Liu Y, Li T (2017) Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front Plant Sci 8:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabuchi K et al (2018) MYB30 links ROS signaling, root cell elongation, and plant immune responses. Proc Natl Acad Sci U S A 115:4710–4719

    Article  Google Scholar 

  • Madian AG, Regnier FE (2010) Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9(8):3766–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59(1):37–49

    Article  CAS  Google Scholar 

  • Martins L, Knuesting J, Bariat L, Dard A, Freibert SA, Marchand CH et al (2020) Redox modification of the iron-sulfur glutaredoxin GRXS17 activates holdase activity and protects plants from heat stress. Plant Physiol 184(2):676–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLachlan DH (2020) Systemic signalling, and the synchronization of stomatal response. New Phytol 225(1):5–6

    Article  PubMed  Google Scholar 

  • Meng X, Li L, De Clercq I, Narsai R, Xu Y, Hartmann A et al (2019) ANAC017 coordinates organellar functions and stress responses by reprogramming retrograde signaling. Plant Physiol 180(1):634–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PK (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61(15):4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3(8):730–735

    Article  PubMed  Google Scholar 

  • Møller IM, Rogowska-Wrzesinska A, Rao RSP (2011) Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J Proteome 74(11):2228–2242

    Article  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31(3):203–216

    Article  PubMed  Google Scholar 

  • Nguyen TP, Cueff G, Hegedus DD, Rajjou L, Bentsink L (2015) A role for seed storage proteins in Arabidopsis seed longevity. J Exp Bot 66(20):6399–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazi AK, Bariat L, Riondet C, Carapito C, Mhamdi A, Noctor G, Reichheld JP (2019) Cytosolic isocitrate dehydrogenase from Arabidopsis thaliana is regulated by glutathionylation. Antioxidants 8(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2013) Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant Cell Environ 36(4):789–803

    Article  CAS  PubMed  Google Scholar 

  • Nietzel T, Elsässer M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P et al (2019) The fluorescent protein sensor roGFP 2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. New Phytol 221(3):1649–1664

    Article  CAS  PubMed  Google Scholar 

  • Nietzel T, Mostertz J, Ruberti C, Née G, Fuchs P, Wagner S et al (2020) Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci 117(1):741–751

    Article  CAS  PubMed  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y et al (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286(6):4760–4771

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018, August) ROS-related redox regulation and signaling in plants. In: Seminars in cell & developmental biology, vol 80. Academic Press, London, pp 3–12

    Google Scholar 

  • Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K et al (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3(1):1–11

    Article  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • Oleinick NL, Chiu SM, Ramakrishnan N, Xue LY (1987) The formation, identification, and significance of DNA-protein cross-links in mammalian cells. Br J Cancer Suppl 8:135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Progress in botany. Springer, Berlin, pp 231–245

    Chapter  Google Scholar 

  • Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V et al (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol 165(1):319–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14(7):14950–14973

    Article  PubMed  PubMed Central  Google Scholar 

  • Puerto-Galán L, Pérez-Ruiz JM, Guinea M, Cejudo FJ (2015) The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. J Exp Bot 66(10):2957–2966

    Article  PubMed  PubMed Central  Google Scholar 

  • Requena JR, Chao CC, Levine RL, Stadtman ER (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci 98(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Richter C (1992) Reactive oxygen and DNA damage in mitochondria. Mutat Rese/DNAging 275(3–6):249–255

    Article  CAS  Google Scholar 

  • Rodrigues O, Reshetnyak G, Grondin A, Saijo Y, Leonhardt N, Maurel C, Verdoucq L (2017) Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA-and pathogen-triggered stomatal closure. Proc Natl Acad Sci 114(34):9200–9205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25(5):677–686

    Article  CAS  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR et al (2013) SALT-RESPONSIVE ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25(6):2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta (BBA) Bioenerg 1787(5):468–475

    Article  Google Scholar 

  • Shaikhali J, Heiber I, Seidel T, Ströher E, Hiltscher H, Birkmann S et al (2008) The redox-sensitive transcription factor Rap2. 4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol 8(1):1–14

    Article  Google Scholar 

  • Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S et al (2019) Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. elife 8:e43284

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2019) Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In: Handbook of plant and crop stress, 4th edn. CRC Press, Boca Raton, pp 93–136

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Shi Y, Chang YL, Wu HT, Shalmani A, Liu WT, Li WQ et al (2020) OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice. Plant Cell Rep 39(12):1767–1784

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff H (1995) Antioxidant systems and plant response to the environment. In: Environment and plant metabolism. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221(3):1197–1214

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16(6):13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Deng Y, Shah S, Rao AG, Howell SH (2013) BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25(4):1416–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtman ER (1986) Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, ageing and neutrophil function. Trends Biochem Sci 11(1):11–12

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF et al (2013a) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25(9):3553–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Sejima H, Harper J, Mittler R (2013b) Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. J Exp Bot 64(1):253–263

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C et al (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321(5891):952–956

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65(2–3):270–281

    Article  CAS  Google Scholar 

  • Tarrago L, Laugier E, Zaffagnini M, Marchand C, Le Maréchal P, Rouhier N et al (2009) Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins. J Biol Chem 284(28):18963–18971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci 99(1):517–522

    Article  CAS  PubMed  Google Scholar 

  • Tran D, El-Maarouf-Bouteau H, Rossi M, Biligui B, Briand J, Kawano T et al (2013) Post-transcriptional regulation of GORK channels by superoxide anion contributes to increases in outward-rectifying K+ currents. New Phytol 198(4):1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Trnka D, Engelke AD, Gellert M, Moseler A, Hossain MF, Lindenberg TT et al (2020) Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins. Nat Commun 11(1):1–12

    Article  Google Scholar 

  • Tsuboi H, Kouda K, Takeuchi H, Takigawa M, Masamoto Y, Takeuchi M, Ochi H (1998) 8-Hydroxydeoxyguanosine in urine as an index of oxidative damage to DNA in the evaluation of atopic dermatitis. Br J Dermatol 138(6):1033–1035

    Article  CAS  PubMed  Google Scholar 

  • Ugalde JM, Fuchs P, Nietzel T, Cutolo EA, Homagk M, Vothknecht UC et al (2021) Chloroplast-derived photo-oxidative stress causes changes in H2O2 and E GSH in other subcellular compartments. Plant Physiol 186(1):125–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Schoebel S, Schmitz F, Dong H, Hedfalk K (2020a) Characterization of aquaporin-driven hydrogen peroxide transport. Biochim Biophys Acta (BBA) Biomembr 1862(2):183065

    Article  CAS  Google Scholar 

  • Wang L, Leister D, Guan L, Zheng Y, Schneider K, Lehmann M et al (2020b) The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proc Natl Acad Sci 117(12):6918–6927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5(3):218–223

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi O, Taneike M, Otsu K (2012) Cooperation between proteolytic systems in cardiomyocyte recycling. Cardiovasc Res 96(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Ogura MP, Kingjoe KA, Cohen MF (2019) d-cysteine-induced rapid root abscission in the water fern Azolla Pinnata: implications for the linkage between d-amino acid and reactive sulfur species (RSS) in plant environmental responses. Antioxidants 8(9):411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46(8–9):786–793

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li W, Cao J, Meng F, Yu Y, Huang J et al (2017) Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J 89(2):338–353

    Article  CAS  PubMed  Google Scholar 

  • Yin G, Xin X, Fu S, An M, Wu S, Chen X et al (2017) Proteomic and carbonylation profile analysis at the critical node of seed ageing in Oryza sativa. Sci Rep 7(1):1–12

    Google Scholar 

  • Yin Y, Qin K, Song X, Zhang Q, Zhou Y, Xia X, Yu J (2018) BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol 59(11):2239–2254

    CAS  PubMed  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514(7522):367–371

    Article  CAS  PubMed  Google Scholar 

  • Yuan LB, Dai YS, Xie LJ, Yu LJ, Zhou Y, Lai YX et al (2017) Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiol 173(3):1864–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaffagnini M, Fermani S, Calvaresi M, Orrù R, Iommarini L, Sparla F et al (2016) Tuning cysteine reactivity and sulfenic acid stability by protein microenvironment in glyceraldehyde-3-phosphate dehydrogenases of Arabidopsis thaliana. Antioxid Redox Signal 24(9):502–517

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R (2020) Systemic signaling during abiotic stress combination in plants. Proc Natl Acad Sci 117(24):13810–13820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Sengupta S, Fritschi FB, Azad RK, Nechushtai R, Mittler R (2021b) The impact of multifactorial stress combination on plant growth and survival. New Phytol 230(3):1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Fritschi FB, Mittler R (2021a) Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci 26:588–599

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Sengupta S, Burks D, Azad RK, Mittler R (2019) Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired acclimation response of Arabidopsis to excess light. Plant J 98:126–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2012) Ascorbic acid in plants: biosynthesis, regulation and enhancement. Springer Science & Business Media, New York

    Google Scholar 

  • Zheng J, Bizzozero OA (2010) Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion. Free Radic Res 44(3):258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF et al (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27(5):1445–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohiuddin, M., Muntha, S.t., Ali, A., Faizan, M., Samrana, S. (2023). The Ecology of Reactive Oxygen Species Signalling. In: Faizan, M., Hayat, S., Ahmed, S.M. (eds) Reactive Oxygen Species. Springer, Singapore. https://doi.org/10.1007/978-981-19-9794-5_5

Download citation

Publish with us

Policies and ethics