Skip to main content

Micro-Nano Structured Materials for DNA/RNA Amplification-Based Electrochemical Tests

  • Reference work entry
  • First Online:
Handbook of Nanobioelectrochemistry

Abstract

Nucleic acid amplification is now a standardized analytical technique, allowing precise and rapid determination of the presence of a determined DNA/RNA sequence. Moreover, some sophisticated equipment allows the exquisite quantification of the number of copies originally presented in a sample; many different protocols, enzymes, labels, and equipment have been developed over time, allowing high throughput and automatization. In the same way, modern nanotechnology has been developed over several decades, and now almost any laboratory can synthesize and characterize nanoparticles of different materials and tune size and shape. We believe there is then an opportunity to merge both already mature technological areas and find new and exciting applications to improve the analytical performance, lower the per-analysis cost, and make the whole process (from reagents elaboration to disposal) more environmentally friendly. Here we explore some of the possibilities for nanoscience and nucleic acid amplification to come together to obtain better analytical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MM, Li F, Zhang Z, Zhang K, Kang D-K, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–3341

    Article  CAS  PubMed  Google Scholar 

  • Ang WL, Seah XY, Koh PC, Caroline C, Bonanni A (2020) Electrochemical polymerase chain reaction using electroactive graphene oxide nanoparticles as detection labels. ACS Appl Nano Mater 3:5489–5498

    Article  CAS  Google Scholar 

  • Aryal BR, Ranasinghe DR, Westover TR, Calvopiña DG, Davis RC, Harb JN, Woolley AT (2020) DNA origami mediated electrically connected metal-semiconductor junctions. Nano Res 13:1419–1426

    Article  CAS  Google Scholar 

  • Authier L, Grossiord C, Brossier P, Limoges B (2001) Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 73:4450–4456

    Article  CAS  PubMed  Google Scholar 

  • Bansal KS, Jyoti A, Mahato K, Chandra P, Prakash R (2017) Highly sensitive in vitro biosensor for enterotoxigenic Escherichia coli detection based on ssDNA anchored on PtNPs-chitosan nanocomposite. Electroanalysis 29:2665–2671

    Article  Google Scholar 

  • Barreda-García S, González-Álvarez MJ, de-los-Santos-Álvarez N, Palacios-Gutiérrez JJ, Miranda-Ordieres AJ, Lobo-Castañón MJ (2014) Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens Bioelectron 68:122–128

    Article  PubMed  Google Scholar 

  • Becherer L, Borst N, Bakheit M, Frischmann S, Zengerle R, von Stetten F (2020) Loop-mediated isothermal amplification (LAMP) – Review and classification of methods for sequence-specific detection. Anal Methods 12:717–746

    Article  Google Scholar 

  • Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46:4281–4298

    Article  CAS  PubMed  Google Scholar 

  • Brasil de Oliveira Marques PR, Lermo A, Campoy S, Yamanaka H, Barbé J, Alegret S, Pividori MI (2009) Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety. Anal Chem 81:1332–1339

    Article  CAS  Google Scholar 

  • Cai H, Shang C, Hsing I-M (2004) Sequence-specific electrochemical recognition of multiple species using nanoparticle labels. Anal Chim Acta 523:61–68

    Article  CAS  Google Scholar 

  • Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 7:1700845

    Article  Google Scholar 

  • Chen Z, Liu Y, Xin C, Zhao J, Liu S (2018) A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing. Biosens Bioelectron 113:1–8

    Article  PubMed  Google Scholar 

  • Chen Y, Li Y, Shi Y, Ping J, Wu J, Chen H (2020) Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. Trends Anal Chem 127:115912

    Article  CAS  Google Scholar 

  • de la Escosura-Muñiz A, Baptista-Pires L, Serrano L, Altet L, Francino O, Sánchez A, Merkoçi A (2016) Magnetic bead/gold nanoparticle double-labeled primers for electrochemical detection of isothermal amplified Leishmania DNA. Small 12:205–213

    Article  PubMed  Google Scholar 

  • Dirks RM, Pierce NA (2004) From the cover: triggered amplification by hybridization chain reaction. Proc Natl Acad Sci 101:15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Mao X, Yang Y, Zhu X, Yin Y, Li G (2016) Rolling circle amplification in electrochemical biosensor with biomedical applications. J Electroanal Chem 781:223–232

    Article  CAS  Google Scholar 

  • Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X (2014) Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86:2124–2213

    Article  CAS  PubMed  Google Scholar 

  • Gillespie P, Ladame S, O’Hare D (2019) Molecular methods in electrochemical microRNA detection. Analyst 144:114–129

    Article  CAS  Google Scholar 

  • Gloag L, Mehdipour M, Chen D, Tilley RD, Gooding JJ (2019) Advances in the application of magnetic nanoparticles for sensing. Adv Mater 31:1904385

    Article  CAS  Google Scholar 

  • Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Chemistry: rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    Article  CAS  PubMed  Google Scholar 

  • Goon IY, Lai LMH, Lim M, Amal R, Gooding JJ (2010) “Dispersible electrodes”: a solution to slow response times of sensitive sensors. Chem Commun 46:8821–8823

    Article  CAS  Google Scholar 

  • Hou T, Liu X, Wang X, Jiang A, Liu S, Li F (2014) DNAzyme-guided polymerization of aniline for ultrasensitive electrochemical detection of nucleic acid with bio-bar codes-initiated rolling circle amplification. Sensors Actuators B Chem 190:384–388

    Article  CAS  Google Scholar 

  • Ji H, Yan F, Lei J, Ju H (2012) Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification. Anal Chem 84:7166–7171

    Article  CAS  PubMed  Google Scholar 

  • Koehne J, Chen H, Li J, Cassell AM, Ye Q, Ng HT, Han J, Meyyappan M (2003) Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology 14:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Koehne JE, Chen H, Cassell A, Liu G, Li J, Meyyappan M (2009) Arrays of carbon nanofibers as a platform for biosensing at the molecular level and for tissue engineering and implantation. Biomed Mater Eng 19:35–43

    PubMed  Google Scholar 

  • Labib M, Berezovski MV (2015) Electrochemical sensing of microRNAs: avenues and paradigms. Biosens Bioelectron 68:83–94

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Yang F, Tang L, Chen K, Zhang G-J (2015) Identification of Chinese herbs using a sequencing-free nanostructured electrochemical DNA biosensor. Sensors 15:29882–29892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lermo A, Campoy S, Barbé J, Hernández S, Alegret S, Pividori MI (2007) In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. Biosens Bioelectron 22:2010–2017

    Article  CAS  PubMed  Google Scholar 

  • Li LL, Cai H, Lee TMH, Barford J, Hsing IM (2004) Electrochemical detection of PCR amplicons using electroconductive polymer modified electrode and multiple nanoparticle labels. Electroanalysis 16:81–87

    Article  CAS  Google Scholar 

  • Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep 7:1–7

    Google Scholar 

  • Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C (2016) Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc 11:1244–1263

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Liu J (2017) Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Anal Methods 9:2633–2643

    Article  Google Scholar 

  • Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183:297–304

    Article  CAS  Google Scholar 

  • Liu L, Chang Y, Xia N, Peng P, Zhang L, Jiang M, Zhang J, Lin L (2017) Simple, sensitive and label–free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Biosens Bioelectron 94:235–242

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Luo J, Fang L, Huang H, Deng J, Huang J, Zhang S, Li Y, Zheng J (2018) An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation. Biosens Bioelectron 121:47–53

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li X, Chen J, Yuan C (2020) Micro/nano electrode array sensors: advances in fabrication and emerging applications in bioanalysis. Front Chem 8:1102

    Article  CAS  Google Scholar 

  • Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y (2019) Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 48:5717–5751

    Article  CAS  PubMed  Google Scholar 

  • Masud MK, Na J, Lin TE, Malgras V, Preet A, Ibn Sina AA, Wood K, Billah M, Kim J, You J, Kani K, Whitten AE, Salomon C, Nguyen NT, Shiddiky MJA, Trau M, Hossain MSA & Yamauchi Y (2020) Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosens Bioelectron 168:112429

    Google Scholar 

  • Meng T, Jia H, An S, Wang H, Yang X, Zhang Y (2020) Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of microRNA-21. Sensors Actuators B Chem 323:128621

    Article  CAS  Google Scholar 

  • Miao P, Tang Y, Yin J (2015a) MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification. Chem Commun 51:15629–15632

    Article  CAS  Google Scholar 

  • Miao P, Wang B, Meng F, Yin J, Tang Y (2015b) Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode. Bioconjug Chem 26:602–607

    Article  CAS  PubMed  Google Scholar 

  • Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229

    Google Scholar 

  • Nguyen K, Monteverde M, Filoramo A, Goux-Capes L, Lyonnais S, Jegou P, Viel P, Goffman M, Bourgoin JP (2008) Synthesis of thin and highly conductive DNA-based palladium nanowires. Adv Mater 20:1099–1104

    Article  CAS  Google Scholar 

  • Nguyen T, Chidambara VA, Andreasen SZ, Golabi M, Huynh VN, Linh QT, Bang DD, Wolff A (2020) Point-of-care devices for pathogen detections: the three most important factors to realise towards commercialization. TrAC Trends Anal Chem 131:116004

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:63e

    Article  Google Scholar 

  • Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  CAS  PubMed  Google Scholar 

  • Pastucha M, Farka Z, Lacina K, Mikušová Z, Skládal P (2019) Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Microchim Acta 186:312

    Article  Google Scholar 

  • Purohit B, Vernekar PR, Shetti NP, Chandra P (2020) Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis. Sensors International 1:100040

    Article  Google Scholar 

  • Rashid JIA, Yusof NA (2017) The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: a review. Sens Bio-Sensing Res 16:19–31

    Article  Google Scholar 

  • Richter J (2003) Metallization of DNA. Phys E Low-dimensional Syst Nanostructures 16:157–173

    Article  CAS  Google Scholar 

  • Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich H, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Saiki R, Gelfand D, Stoffel S, Scharf S, Higuchi R, Horn G, Mullis K, Erlich H (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  • Shan J, Wang L, Yu H, Ji J, Amer WA, Chen Y, Jing G, Khalid H, Akram M, Abbasi NM (2016) Recent progress in Fe3O4 based magnetic nanoparticles: from synthesis to application. Mater Sci Technol 32:602–614

    CAS  Google Scholar 

  • Sharif S, Wang Y, Ye Z, Wang Z, Qiu Q, Ying S, Ying Y (2019) A novel impedimetric sensor for detecting LAMP amplicons of pathogenic DNA based on magnetic separation. Sensors Actuators B Chem 301:127051

    Article  CAS  Google Scholar 

  • Su Y, Li D, Liu B, Xiao M, Wang F, Li L, Zhang X, Pei H (2019) Rational design of framework nucleic acids for bioanalytical applications. ChemPlusChem 84:512–523

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Wang Y, Deng R, Lin L, Liu Y, Li J (2015) Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Nanoscale 7:987–993

    Article  CAS  PubMed  Google Scholar 

  • Tosar JP, Brañas G, Laíz J (2010) Electrochemical DNA hybridization sensors applied to real and complex biological samples. Biosens Bioelectron 26:1205–1217

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ma H, Wang X, Pang X, Wu D, Du B, Wei Q (2015) Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd-Fe3O4-GS as the matrix and SiO2 as the label. Biosens Bioelectron 74:59–65

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang X, Zhao L, Bao T, Wen W, Zhang X, Wang S (2017) Integrated amplified aptasensor with in-situ precise preparation of copper nanoclusters for ultrasensitive electrochemical detection of microRNA 21. Biosens Bioelectron 98:386–391

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Lillehoj P, Ho CM (2010) DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr Res 67:458–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Pei L, Xuan S, Yan Q, Gong X (2016) Particle size dependent rheological property in magnetic fluid. J Magn Magn Mater 408:18–25

    Article  CAS  Google Scholar 

  • Xu J, Zhu X, Zhou X, Khusbu FY, Ma C (2020) Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters. TrAC Trends Anal Chem 124:115786

    Article  CAS  Google Scholar 

  • Yang T, Zhou N, Zhang Y, Zhang W, Jiao K, Li G (2009) Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron 24:2165–2170

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Shi K, Dou B, Xiang Y, Chai Y, Yuan R (2015) In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive and label-free electrochemical detection of microRNA. ACS Appl Mater Interfaces 7:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Yeung SW, Hsing IM (2006) Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens Bioelectron 21:989–997

    Article  CAS  PubMed  Google Scholar 

  • Yeung S, Lee TM-H, Cai H, Hsing IH (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res 34:e118

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu N, Wang Z, Wang C, Han J, Bu H (2017) Combining padlock exponential rolling circle amplification with CoFe2O4 magnetic nanoparticles for microRNA detection by nanoelectrocatalysis without a substrate. Anal Chim Acta 962:24–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang T, Zhou N, Zhang W, Jiao K (2008) Nano Au/TiO2 hollow microsphere membranes for the improved sensitivity of detecting specific DNA sequences related to transgenes in transgenic plants. Sci China Ser B Chem 51:1066–1073

    Article  CAS  Google Scholar 

  • Zhang C, Li D, Li D, Wen K, Yang X, Zhu Y (2019) Rolling circle amplification-mediated in situ synthesis of palladium nanoparticles for the ultrasensitive electrochemical detection of microRNA. Analyst 144:3817–3825

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xu H, Zhao X, Tang X, Yang S, Yu L, Zhao S, Chang K, Chen M (2020) 3D DNA nanonet structure coupled with target-catalyzed hairpin assembly for dual-signal synergistically amplified electrochemical sensing of circulating microRNA. Anal Chim Acta 1122:39–47

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Ali MM, Brook MA, Li Y (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chemie Int Ed 47:6330–6337

    Article  CAS  Google Scholar 

  • Zhao S, Zhou Y, Wei L, Chen L (2020) Low fouling strategy of electrochemical biosensor based on chondroitin sulfate functionalized gold magnetic particle for voltammetric determination of mycoplasma ovipneumonia in whole serum. Anal Chim Acta 1126:91–99

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Yang G, Li H, Du D, Lin Y (2015a) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Liu W, Liu H, Liao Y, Wei J, Zhou X, Xing D (2015b) Construction of Fe3O4/vancomycin/PEG magnetic nanocarrier for highly efficient pathogen enrichment and gene sensing. ACS Appl Mater Interfaces 7:12873–12881

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhang H, Ni S, Korabečná M, Yobas L, Neuzil P (2020) The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond. TrAC Trends Anal Chem 130:115984

    Article  CAS  Google Scholar 

  • Zhuang J, Fu L, Xu M, Yang H, Chen G, Tang D (2013) Sensitive electrochemical monitoring of nucleic acids coupling DNA nanostructures with hybridization chain reaction. Anal Chim Acta 783:17–23

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Cortón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Figueredo, F., Mosquera-Ortega, M., Cortón, E. (2023). Micro-Nano Structured Materials for DNA/RNA Amplification-Based Electrochemical Tests. In: Azad, U.P., Chandra, P. (eds) Handbook of Nanobioelectrochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-9437-1_19

Download citation

Publish with us

Policies and ethics