Skip to main content
Log in

Nano Au/TiO2 hollow microsphere membranes for the improved sensitivity of detecting specific DNA sequences related to transgenes in transgenic plants

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS using [Fe(CN)6]3−/4− as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10−12 to 1.0×10−8 mol/L DNA and a detection limit of 2.3×10−13 mol/L could be obtained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riccardi C S, Kranz C, Kowalik J, Yamanaka H, Mizaikoff B, Josowicz M. Label-free DNA detection of hepatitis C virus based on modified conducting polypyrrole films at microelectrodes and atomic force microscopy tip-integrated electrodes. Anal Chem, 2008, 80(1): 237–245

    Article  Google Scholar 

  2. Oliveira S C B, Diculescu V C, Palleschi G, Compagnone D, Oliveira-Brett A M. Electrochemical oxidation of ochratoxin A at a glassy carbon electrode and in situ evaluation of the interaction with deoxyribonucleic acid using an electrochemical deoxyribonucleic acid-biosensor. Anal Chim Acta, 2007, 588: 283–291

    Article  CAS  Google Scholar 

  3. LaGier M J, Fell J W, Goodwin K D. Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Mar Pollut Bull, 2007, 54(6): 757–770

    Article  CAS  Google Scholar 

  4. Yang T, Zhang W, Du M, Jiao K. A PDDA/poly(2,6-pyridinedicar-boxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene. Talanta, 2008, 75(4): 987–994

    Article  CAS  Google Scholar 

  5. Zhang X J, Jiang W, Song D, Liu J X, Li F S. Preparation and catalytic activity of Ni/CNTs nanocomposites using microwave irradiation heating method. Mater Lett, 2008, 62(15): 2343–2346

    Article  CAS  Google Scholar 

  6. Shi X Q, Jiang X H, Lu L D, Yang X J, Wang X. Structure and catalytic activity of nanodiamond/Cu nanocomposites. Mater Lett, 2008, 62(8–9): 1238–1241

    Article  CAS  Google Scholar 

  7. Hanson M P, Bank S R, Zide J M O, Zimmerman J D, Gossard A C. Controlling electronic properties of epitaxial nanocomposites of dissimilar materials. J Cryst Growth, 2007, 301–302: 4–9

    Article  Google Scholar 

  8. Irimpan L, Nampoori V P N, Radhakrishnan P. Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag. Chem Phys Lett, 2008, 455(4–6): 265–269

    Article  CAS  Google Scholar 

  9. Ortega D, Garitaonandía J S, Barrera-Solano C, Domínguez M. Thermal evolution of the ferromagnetic resonance in Fe2O3/SiO2 nanocomposites for magneto-optical sensors. Sensor Actuat A-Phys, 2008, 142(2): 554–560

    Article  Google Scholar 

  10. Nethravathi C, Ravishankar N, Shivakumara C, Rajamathi M. Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behaviour. J Power Sources, 2007, 172(2): 970–974

    Article  CAS  Google Scholar 

  11. Wang Y, Zhang D S, Shi L Y, Li L, Zhang J P. Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks. Mater Chem Phys, 2008, 110(2–3): 463–470

    CAS  Google Scholar 

  12. Abdel A A, Barakat M A, Mohamed R M. Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol. Appl Surf Sci, 2008, 254(15): 4577–4583

    Article  Google Scholar 

  13. Gutiérrez-Tauste D, Domènech X, Domingo C, Ayllón J A. Dopamine/TiO2 hybrid thin films prepared by the liquid phase deposition method. Thin Solid Films, 2008, 516(12): 3831–3835

    Article  Google Scholar 

  14. Thiemig D, Bund A. Characterization of electrodeposited Ni-TiO2 nanocomposite coatings. Surf Coat Tech, 2008, 202(13): 2976–2984

    Article  CAS  Google Scholar 

  15. Wang M Q, Wang X Q. PPV/TiO2 hybrid composites prepared from PPV precursor reaction in aqueous media and their application in solar cells. Polymer, 2008, 49(6): 1587–1593

    Article  CAS  Google Scholar 

  16. Chatterjee S. Titania-germanium nanocomposite as a thermoelectric material. Mater Lett, 2008, 62(4–5): 707–710

    Article  CAS  Google Scholar 

  17. Zhao X J, Mai Z B, Kang X H, Zou X Y. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron, 2008, 23(7): 1032–1038

    Article  CAS  Google Scholar 

  18. Zhang W, Yang T, Jiang C, Jiao K. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode. Appl Surf Sci, 2008, 254(15): 4750–4756

    Article  CAS  Google Scholar 

  19. Yang J, Yang T, Feng Y Y, Jiao K. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal Biochem, 2007, 365: 24–30

    Article  CAS  Google Scholar 

  20. Feng Y Y, Yang T, Zhang W, Jiang C, Jiao K. Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: Gold nanoparticle/polyaniline nanotube membranes. Anal Chim Acta, 2008, 616(2): 144–251

    Article  CAS  Google Scholar 

  21. Milsom E V, Novak J, Oyama M, Marken F. Electrocatalytic oxidation of nitric oxide at TiO2-Au nanocomposite film electrodes. Electrochem Commun, 2007, 9(3): 436–442

    Article  CAS  Google Scholar 

  22. Jiang C, Yang T, Jiao K, Gao H W. A DNA electrochemical sensor with poly-L-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim Acta, 2008, 53: 2917–2924

    Article  CAS  Google Scholar 

  23. Yuan Y R, Yuan R, Chai Y Q, Zhuo Y, Shi Y T, He X L, Miao X M. A reagentless amperometric immunosensor for alpha-fetoprotein based on gold nanoparticles/TiO2 colloids/Prussian blue modified platinum. Electroanalysis, 2007, 19: 1402–1410

    Article  CAS  Google Scholar 

  24. Peng H, Soeller C, Travas-Sejdic J. Novel conducting polymers for DNA Sensing. Macromolecules, 2007, 40: 909–914

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Jiao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20635020 and 20375020), Doctoral Foundation of the Ministry of Education of China (Grant No. 20060426001) and Natural Science Foundation of Qingdao City (Grant No. 04-2-JZP-8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, T., Zhou, N. et al. Nano Au/TiO2 hollow microsphere membranes for the improved sensitivity of detecting specific DNA sequences related to transgenes in transgenic plants. Sci. China Ser. B-Chem. 51, 1066–1073 (2008). https://doi.org/10.1007/s11426-008-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0116-2

Keywords

Navigation