Skip to main content

Biopolymeric Hydrogels: A New Era in Combating Heavy Metal Pollution in Industrial Wastewater

  • Chapter
  • First Online:
Membranes for Water Treatment and Remediation

Abstract

Recent advancement of materials science reveals various technological aspects of natural biopolymeric materials. In the past few years, biopolymers are gaining attention due to their biocompatibility and excellent physicochemical properties. One of the key aspects of these biopolymers is surely heavy metal adsorption and removal from wastewater. Hydrogels, a three-dimensional cross-linked hydrophilic biopolymeric network having high water retention property has pronounced adsorption efficacy among numerous types of biopolymers. These flexible materials are easy to produce and relatively a lost-cost alternative to various conventional adsorbents. Heavy metals like Cr6+, Fe3+, Pb2+, Hg2+, As3+, etc. could be enormously harmful to the environment due to their severe toxicity. In recent years, hydrogels have been widely used in removing such toxic heavy metals from different water bodies. Sometimes, various nanomaterials have been impregnated into the hydrogel matrix to enhance the removal capacity of the system. The removal efficacy of these modified hydrogel systems is quite high compared to other conventional carbon-based adsorbents. This study reviews the recent advancements of biopolymeric hydrogels in the field of heavy metal adsorption in wastewater. Such a study could be useful for making futuristic bio-adsorbent materials for a cleaner and greener environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  Google Scholar 

  2. Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. Heavy Metals 10:115–132

    Google Scholar 

  3. Bardhan S, Roy S, Chanda DK, Ghosh S, Mondal D, Das S, Das S (2020) Nitrogenous carbon dot decorated natural microcline: an ameliorative dual fluorometric probe for Fe3+ and Cr6+ detection. Dalton Trans 49(30):10554–10566

    Article  CAS  Google Scholar 

  4. Karadağ E, Üzüm ÖB, Saraydın D, Güven O (2006) Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions. Mater Des 27(7):576–584

    Article  Google Scholar 

  5. Byrne ME, Park K, Peppas NA (2002) Molecular imprinting within hydrogels. Adv Drug Deliv Rev 54(1):149–161

    Article  CAS  Google Scholar 

  6. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  Google Scholar 

  7. Singh TR, McCarron PA, Woolfson AD, Donnelly RF (2009) Investigation of swelling and network parameters of poly (ethylene glycol)-crosslinked poly (methyl vinyl ether-co-maleic acid) hydrogels. Eur Polym J 45(4):1239–1249

    Article  Google Scholar 

  8. Tian Y (2008) Characterization of nitrate ions adsorption and diffusion in P (DMAEMA/HEMA) hydrogels. Chin Chem Lett 19(9):1111–1114

    Article  CAS  Google Scholar 

  9. Thakur VK, Thakur MK (eds) (2018) Hydrogels: recent advances. Springer

    Google Scholar 

  10. Jones DS, Andrews GP, Gorman SP (2005) Characterization of crosslinking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. J Pharm Pharmacol 57(10):1251–1259

    Article  CAS  Google Scholar 

  11. Thakur S, Thakur VK, Arotiba OA (2018) History, classification, properties and application of hydrogels: an overview Hydrogels 29–50

    Google Scholar 

  12. Sastry SK, Lakonishok M, Wu S, Truong TQ, Huttenlocher A, Turner CE, Horwitz AF (1999) Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. Int J Cell Biol 144(6):1295–1309

    Article  CAS  Google Scholar 

  13. Chen Q, Zhu L, Zhao C, Zheng J (2012) Hydrogels for removal of heavy metals from aqueous solution. J Environ Anal Toxicol 2(07):2161–2525

    Google Scholar 

  14. Yetimoğlu EK, Kahraman MV, Ercan Ö, Akdemir ZS, Apohan NK (2007) N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym 67(5):451–460

    Article  Google Scholar 

  15. Van Tran V, Park D, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut Res 25(25):24569–24599

    Article  Google Scholar 

  16. Chirani N, Yahia LH, Gritsch L, Motta FL, Chirani S, Farè S. History and applications of hydrogels

    Google Scholar 

  17. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118

    Article  Google Scholar 

  18. Daniele S, Refojo MF, Schepens CL, Freeman HM (1968) Glyceryl methacrylate hydrogel as a vitreous implant: an experimental study. Arch Ophthalmol 80(1):120–127

    Article  CAS  Google Scholar 

  19. Tally M, Kattan M, Kouba L (1970) Antimicrobial chitosan-G-poly (AMPS-Co-AA-Co-AM)/ground basalt composite hydrogel: synthesis and characterization

    Google Scholar 

  20. Seow WY, Hauser CA (2014) Short to ultrashort peptide hydrogels for biomedical uses. Mater Today 17(8):381–388

    Article  CAS  Google Scholar 

  21. Hosaka S, Ozawa H, Tanzawa H (1979) Controlled release of drugs from hydrogel matrices. J Appl Polym Sci 23(7):2089–2098

    Article  CAS  Google Scholar 

  22. Pedley DG, Tighe BJ (1979) Water binding properties of hydrogel polymers for reverse osmosis and related applications. Br Polym J 11(3):130–136

    Article  CAS  Google Scholar 

  23. Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Pulsatile drug delivery systems using hydrogels. Adv Drug Deliv Rev 11(1–2):85–108

    Article  CAS  Google Scholar 

  24. Peppas NA, Bures P, Leobandung WS, Ichikawa H (2003) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  Google Scholar 

  25. Tavakoli J, Tang Y (2017) Hydrogel based sensors for biomedical applications: an updated review. Polymers 9(8):364

    Article  Google Scholar 

  26. Daubresse C, Grandfils C, Jerome R, Teyssie P (1994) Enzyme immobilization in nanoparticles produced by inverse microemulsion polymerization. J Colloid Interface Sci 168(1):222–229

    Article  CAS  Google Scholar 

  27. Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, Du Toit LC, Pillay V (2016) A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 21(11):1580

    Article  Google Scholar 

  28. Saha A, Sekharan S, Manna U (2020) Superabsorbent hydrogel (SAH) as a soil amendment for drought management: a review. Soil Tillage Res 204:104736

    Article  Google Scholar 

  29. Rehab A, Akelah A, Issa R, D'Antone S, Solaro R, Chiellini E (1991) Controlled release of herbicides supported on polysaccharide based hydrogels. J Bioact Compat Polym 6(1):52–63

    Google Scholar 

  30. Tang L, Wu S, Qu J, Gong L, Tang J (2020) A review of conductive hydrogel used in flexible strain sensor. Materials 13(18):3947

    Article  CAS  Google Scholar 

  31. Wang Q, Guo J, Lu X, Ma X, Cao S, Pan X, Ni Y (2021) Wearable lignin-based hydrogel electronics: a mini-review. Int J Biol Macromol 181:45–50

    Article  CAS  Google Scholar 

  32. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Kolahchi AR, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63

    Article  CAS  Google Scholar 

  33. Zhao L, Gan J, Xia T, Jiang L, Zhang J, Cui Y, Qian G, Yang Z (2019) A luminescent metal–organic framework integrated hydrogel optical fibre as a photoluminescence sensing platform for fluorescence detection. J Mater Chem C 7(4):897–904

    Article  CAS  Google Scholar 

  34. Mittal H, Ray SS, Okamoto M (2016) Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification. Macromol Mater Eng 301(5):496–522

    Article  CAS  Google Scholar 

  35. Khan M, Lo IM (2016) A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res 106:259–271

    Article  CAS  Google Scholar 

  36. Yue S, He H, Li B, Hou T (2020) Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials 10(8):1511

    Article  CAS  Google Scholar 

  37. Vasile C, Pamfil D, Stoleru E, Baican M (2020) New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules 25(7):1539

    Article  CAS  Google Scholar 

  38. Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV (2018) Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mater Sci Eng R Rep 125:1–41

    Article  Google Scholar 

  39. Stanisz M, Klapiszewski Ł, Jesionowski T (2020) Recent advances in the fabrication and application of biopolymer-based micro-and nanostructures: a comprehensive review. Chem Eng J 397:125409

    Article  CAS  Google Scholar 

  40. Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006

    Article  CAS  Google Scholar 

  41. Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E (2020) Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ Chem Lett 1–12

    Google Scholar 

  42. Yadav SK, Jung YC, Kim JH, Ko YI, Ryu HJ, Yadav MK, Kim YA, Cho JW (2013) Mechanically robust, electrically conductive biocomposite films using antimicrobial chitosan-functionalized graphenes. Part Part Syst Charact 30(8):721–727

    Article  CAS  Google Scholar 

  43. Affonso LN, Marques JL Jr, Lima VV, Gonçalves JO, Barbosa SC, Primel EG, Burgo TA, Dotto GL, Pinto LA, Cadaval Jr TR (2020) Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J Hazard Mater 388:122042

    Article  CAS  Google Scholar 

  44. Perumal S, Atchudan R, Thirukumaran P, Yoon DH, Lee YR, Cheong IW (2022) Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles. Chemosphere 286:131760

    Article  CAS  Google Scholar 

  45. Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K (2008) Adsorption of gold(III) platinum(W) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour Technol 99:3801–3809

    Article  CAS  Google Scholar 

  46. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177:962–970

    Article  CAS  Google Scholar 

  47. Monier M, Abdel-Latif DA (2012) Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg (II), Cd (II) and Zn (II) ions from aqueous solutions. J Hazard Mater 209:240–249

    Article  Google Scholar 

  48. Kagaya S, Miyazaki H, Ito M, Tohda K, Kanbara T (2010) Selective removal of mercury (II) from wastewater using polythioamides. J Hazard Mater 175(1–3):1113–1115

    Google Scholar 

  49. Liu C, Huang Y, Naismith N, Economy J, Talbott J (2003) Novel polymeric chelating fibers for selective removal of mercury and cesium from water. Environ Sci Technol 37(18):4261–4268

    Article  CAS  Google Scholar 

  50. Denizli A, Kesenci K, Arica Y, Pişkin E (2000) Dithiocarbamate-incorporated monosize polystyrene microspheres for selective removal of mercury ions. React Funct Polym 44(3):235–243

    Article  CAS  Google Scholar 

  51. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74

    Article  CAS  Google Scholar 

  52. Yavuz E, Senkal BF, Bicak N (2005) Poly (acrylamide) grafts on spherical polyvinyl pyridine resin for removal of mercury from aqueous solutions. React Funct Polym 65(1–2):121–125

    Article  CAS  Google Scholar 

  53. Wang J, Deng B, Chen H, Wang X, Zheng J (2009) Removal of aqueous Hg (II) by polyaniline: sorption characteristics and mechanisms. Environ Sci Technol 43(14):5223–5228

    Article  CAS  Google Scholar 

  54. Vieira RS, Oliveira ML, Guibal E, Rodríguez-Castellón E, Beppu MM (2011) Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids Surf A: A Physicochem Eng Asp 374(1–3):108–114

    Google Scholar 

  55. Wang X, Deng W, Xie Y, Wang C (2013) Selective removal of mercury ions using a chitosan–poly (vinyl alcohol) hydrogel adsorbent with three-dimensional network structure. Chem Eng J 228:232–242

    Article  CAS  Google Scholar 

  56. Saber-Samandari S, Gazi M (2013) Removal of mercury (II) from aqueous solution using chitosan-graft-polyacrylamide semi-IPN hydrogels. Sep Sci Technol 48(9):1382–1390

    Article  CAS  Google Scholar 

  57. Saberi A, Sadeghi M, Alipour E (2020) Design of AgNPs-base starch/PEG-poly (acrylic acid) hydrogel for removal of mercury (II). J Polym Environ 28(3):906–917

    Article  CAS  Google Scholar 

  58. Liu X, Gan H, Hu C, Sun W, Zhu X, Meng Z, Gu R, Wu Z, Dou G (2019) Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent. Int J Nanomed 14:289

    Article  CAS  Google Scholar 

  59. Bhuyan MM, Okabe H, Hidaka Y, Hara K (2018) Pectin-[(3-acrylamidopropyl) trimethylammonium chloride-co-acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption. J Appl Polym Sci 135(8):45906

    Article  Google Scholar 

  60. Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorp Sci Technol 26(8):563–579

    Article  CAS  Google Scholar 

  61. Varaprasad K, Nùñez D, Ide W, Jayaramudu T, Sadiku ER (2020) Development of high alginate comprised hydrogels for removal of Pb (II) ions. J Mol Liq 298:112087

    Article  CAS  Google Scholar 

  62. Qi X, Lin L, Shen L, Li Z, Qin T, Qian Y, Wu X, Wei X, Gong Q, Shen J (2019) Efficient decontamination of lead ions from wastewater by salecan polysaccharide-based hydrogels. ACS Sustain Chem Eng 7(12):11014–11023

    Article  CAS  Google Scholar 

  63. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB (2011) Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng Sci 168(1):68–76

    Article  CAS  Google Scholar 

  64. Makhado E, Pandey S, Kang M, Fosso-Kanke E (2019) Microwave assisted synthesis of xanthan gum-cl-Dimethyl acrylamide hydrogel based silica hydrogel as adsorbent for cadmium (II) removal. In: International conference on science, engineering, technology & waste management (SETWM-19), vol 1, pp 1–6

    Google Scholar 

  65. Sinha V, Chakma S (2019) Advances in the preparation of hydrogel for wastewater treatment: a concise review. J Environ Chem Eng 7(5):103295

    Article  CAS  Google Scholar 

  66. Chen CC, Chung YC (2006) Arsenic removal using a biopolymer chitosan sorbent. J Environ Sci Health A 41(4):645–658

    Article  CAS  Google Scholar 

  67. Su F, Zhou H, Zhang Y, Wang G (2016) Three-dimensional honeycomb-like structured zero-valent iron/chitosan composite foams for effective removal of inorganic arsenic in water. J Colloid Interface Sci 478:421–429

    Article  CAS  Google Scholar 

  68. Vilela PB, Dalalibera A, Duminelli EC, Becegato VA, Paulino AT (2019) Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ Sci Pollut Res 26(28):28481–28489

    Article  CAS  Google Scholar 

  69. Abdel-Halim ES, Al-Deyab SS (2011) Hydrogel from crosslinked polyacrylamide/guar gum graft copolymer for sorption of hexavalent chromium ion. Carbohydr Polym 86(3):1306–1312

    Article  CAS  Google Scholar 

  70. Dax D, Chávez MS, Xu C, Willför S, Mendonça RT, Sánchez J (2014) Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydr Polym 111:797–805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhen Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, A., Bardhan, S., Roy, S., Dutta, S., Das, S. (2023). Biopolymeric Hydrogels: A New Era in Combating Heavy Metal Pollution in Industrial Wastewater. In: Nadda, A.K., Banerjee, P., Sharma, S., Nguyen-Tri, P. (eds) Membranes for Water Treatment and Remediation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-9176-9_8

Download citation

Publish with us

Policies and ethics