Skip to main content

Microplastic Pollution: Sources, Environmental Hazards, and Mycoremediation as a Sustainable Solution

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology

Abstract

Synthetic polymers have replaced natural polymers due to their low production cost, wide range of applications, and better resistant properties. Plastic polymers are the most preferred one among synthetic polymers as they have high tolerance against high temperature, photooxidation, and chemical degradation. While these properties make them desirable compound for manufacturing various products, it also imposes environmental hazards upon releasing microplastic particles which has negative impact on terrestrial as well as aquatic ecosystems. Although many plastic remediation technologies involving physicochemical methods have emerged in past decades, they have been inefficient when it comes to remediating microplastic pollutants. In the present scenario, mycoremediation approach has been suggested as an alternative green approach to remediate the microplastic pollution. Fungi possess diverse enzyme systems, metabolic processes, and bioactive compounds which are proven to be efficient in removing microplastic pollutants. The present review highlights the detailed mechanisms as well as evidences for microplastic remediation by fungal system. The types of microplastic pollutants, source, and their hazardous effects on various ecosystems have also been compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oliveira J, Belchior A et al (2020) Marine environmental plastic pollution: mitigation by microorganism degradation and recycling valorization. Front Mar Sci 7

    Google Scholar 

  2. Hosler D, Burkett SL, Tarkanian MJ (1999) Prehistoric polymers: rubber processing in ancient Mesoamerica. Science 284(5422):1988–1991

    Article  CAS  PubMed  Google Scholar 

  3. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    Article  CAS  PubMed  Google Scholar 

  4. Essel EE, Nematollahi A et al (2015) Effects of upstream roughness and Reynolds number on separated and reattached turbulent flow. J Turbul 16(9):872–899

    Article  Google Scholar 

  5. Gasperi J, Wright SL et al (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5

    Article  Google Scholar 

  6. Horton AA, Walton A et al (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  PubMed  Google Scholar 

  7. Geyer R, Jambeck JR, Law KL (2017) Producción, uso y destino de todos los plásticos jamás fabricados. Sci Adv 3(7):1207–1221

    Google Scholar 

  8. Horton AA, Barnes DK (2020) Microplastic pollution in a rapidly changing world: implications for remote and vulnerable marine ecosystems. Sci Total Environ 738:140349

    Article  CAS  PubMed  Google Scholar 

  9. Cowan AR, Costanzo CM et al (2022) Fungal bioremediation of polyethylene: challenges and perspectives. J Appl Microbiol 132(1):78–89

    Article  CAS  PubMed  Google Scholar 

  10. Sánchez C (2020) Fungal potential for the degradation of petroleum-based polymers: an overview of macro-and microplastics biodegradation. Biotechnol Adv 40:107501

    Article  PubMed  Google Scholar 

  11. Ameen F, Moslem M et al (2015) Biodegradation of low density polyethylene (LDPE) by mangrove fungi from the red sea coast. Prog Rubber Plast Recycl Technol 31(2):125–143

    Article  Google Scholar 

  12. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99(21):8857–8874

    Article  CAS  PubMed  Google Scholar 

  13. Paço A, Duarte K et al (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15

    Article  PubMed  Google Scholar 

  14. Grigorakis S, Mason SA, Drouillard KG (2017) Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere 169:233–238

    Article  CAS  PubMed  Google Scholar 

  15. Kawai F, Kawabata T, Oda M (2019) Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol 103(11):4253–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene–a review. Int Biodeter Biodegrad 88:83–90

    Article  Google Scholar 

  17. El-Morsy EM, Hassan HM, Ahmed E (2017) Biodegradative activities of fungal isolates from plastic contaminated soils. Mycosphere 8(8):1071–1087

    Article  Google Scholar 

  18. Danso D, Chow J and Streit WR (2019) Plastics: microbial degradation, environmental and biotechnological perspectives. Appl Environ Microbiol

    Google Scholar 

  19. Liebminger S, Eberl A et al (2007) Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocatal Biotransformation 25(2–4):171–177

    Article  CAS  Google Scholar 

  20. Ghatge S, Yang Y et al (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem 63(1):1–14

    Article  Google Scholar 

  21. Montazer Z, Habibi-Najafi MB, Levin DB (2020) Challenges with verifying microbial degradation of polyethylene. Polymers 12(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhatt P, Pathak VM et al (2021) Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environ Res 200:111762

    Article  CAS  PubMed  Google Scholar 

  23. Law KL, Thompson RC (2014) Microplastics in the seas. Science 345(6193):144–145

    Article  CAS  PubMed  Google Scholar 

  24. Arutchelvi J, Sudhakar M et al (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  25. Bardají DKR, Moretto JAS et al (2020) A mini-review: current advances in polyethylene biodegradation. World J Microbiol Biotechnol 36(2):1–10

    Article  Google Scholar 

  26. Klyosov AA (2007) Wood-plastic composites. John Wiley & Sons

    Book  Google Scholar 

  27. https://www.calpaclab.com/chemical-compatibility-charts

  28. Scalenghe R (2018) Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon 4(12):e00941

    Article  PubMed  PubMed Central  Google Scholar 

  29. Trinh NH (2019) Development of palm kernel oil polyol-based shape memory polyurethane with polyethylene glycol (peg) and poly caprolactone (pcl) as soft segment. Mater Res Express 7(2):025704

    Article  Google Scholar 

  30. Wünsch JR (2000) The economic significance of polystyrene. In: Polystyrene: synthesis, production and applications, vol 1, pp 1–5

    Google Scholar 

  31. Domininghaus H (2005) Synthetische Kunststoffe. Die Kunststoffe und ihre Eigenschaften:451–1442

    Google Scholar 

  32. Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19(6):851–858

    Article  CAS  PubMed  Google Scholar 

  33. Du F, Cai H et al (2020) Microplastics in take-out food containers. J Hazard Mater 399:122969

    Article  CAS  PubMed  Google Scholar 

  34. World Health Organization (2016) Physical activity strategy for the WHO European Region 2016–2025

    Google Scholar 

  35. Verbeek CJ & Gavin C (2020) Grafting functional groups onto biodegradable thermoplastic polyesters. In Reactive and functional polymers Volume Two. Springer, Cham. pp. 245–281

    Google Scholar 

  36. Verbeek JH, Rajamaki B et al (2020) Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 4:1–147

    Google Scholar 

  37. Crawford CB & Quinn B (2017) Physiochemical properties and degradation. In: Microplastic pollutants. Elsevier, pp. 57–100

    Google Scholar 

  38. de Sousa FDB (2021) Plastic and its consequences during the COVID-19 pandemic. Environ Sci Pollut Res:1–12

    Google Scholar 

  39. Harussani MM, Sapuan SM et al (2022) Pyrolysis of polypropylene plastic waste into carbonaceous char: priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 803:149911

    Article  CAS  PubMed  Google Scholar 

  40. Peng BY, Chen Z et al (2020) Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ Int 145:106106

    Article  CAS  PubMed  Google Scholar 

  41. Ceresana (2014) Global demand for PVC to rise by about 3.2%/year to 2021. Addit Polym 2014(11):10–11

    Article  Google Scholar 

  42. https://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (accessed May 01, 2020)

  43. Close LG, Gilbert RD, Fornes RE (1977) Poly (vinyl chloride) degradation—a review. Polym-Plast Tech Mat 8(2):177–198

    Article  CAS  Google Scholar 

  44. Akindoyo JO, Beg MD et al (2016) Polyurethane types, synthesis and applications–a review. RSC Adv 6(115):114453–114482

    Article  CAS  Google Scholar 

  45. Heath DE, Guelcher SA and Cooper SL (2020) Polyurethanes. In Biomaterials science. Academic Press. pp. 103–107

    Google Scholar 

  46. Singh H, Jain AK (2008) Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J Appl Polym Sci 111:1115–1143

    Google Scholar 

  47. Marturano V, Cerruti P, Ambrogi V (2017) Polymer additives. Phys Sci Rev 6:20160130

    Google Scholar 

  48. Crompton TR (2007) Additive migration from plastics into foods: a guide for analytical chemists. Smithers Rapra Publishing

    Google Scholar 

  49. Hahladakis JN, Velis CA et al (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    Article  CAS  PubMed  Google Scholar 

  50. Burgos-Aceves MA, Abo-Al-Ela HG and Faggio C (2021) Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: a review on physiological, biochemical, and genomic aspects. J Hazard Mater 126426

    Google Scholar 

  51. Bhunia K, Sablani SS et al (2013) Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr Rev Food Sci Food Safe 12(5):523–545

    Article  CAS  Google Scholar 

  52. Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C (2021) Physiological and metabolic approach of plastic additive effects: immune cells responses. J Hazard Mater 404:124114

    Article  CAS  PubMed  Google Scholar 

  53. Ambrogi V, Carfagna C et al. (2017) Additives in polymers. In Modification of polymer properties. William Andrew Publishing. pp. 87–108

    Google Scholar 

  54. Morgan AB, Gilman JW (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mat 37(4):259–279

    Article  CAS  Google Scholar 

  55. Muir DC, de Wit CA (2010) Trends of legacy and new persistent organic pollutants in the circumpolar arctic: overview, conclusions, and recommendations. Sci Total Environ 408(15):3044–3051

    Article  CAS  PubMed  Google Scholar 

  56. Höfer R (2012) Processing and performance additives for plastics. In: Polymer science: a comprehensive reference – polymers for a sustainable environment and green energy, vol 1, pp 369–381

    Chapter  Google Scholar 

  57. Lau OW, Wong SK (2000) Contamination in food from packaging material. J Chromatogr A 882(1–2):255–270

    Article  CAS  PubMed  Google Scholar 

  58. Hermabessiere L, Dehaut A et al (2017) Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182:781–793

    Article  CAS  PubMed  Google Scholar 

  59. Christensen CM (2006) The ongoing process of building a theory of disruption. J Product Innovat Manag 23(1):39–55

    Article  Google Scholar 

  60. Zhang F, Xu J et al (2021) Seasonal distributions of microplastics and estimation of the microplastic load ingested by wild caught fish in the East China Sea. J Hazard Mater 419:126456

    Article  CAS  PubMed  Google Scholar 

  61. Ge J, Li H et al. (2021) Review of the toxic effect of microplastics on terrestrial and aquatic plants. Sci Total Environ. p.148333

    Google Scholar 

  62. Wang MH, He Y, Sen B (2019) Research and management of plastic pollution in coastal environments of China. Environ Pollut 248:898–905

    Article  CAS  PubMed  Google Scholar 

  63. Barnes DK, Galgani F et al (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364(1526):1985–1998

    Article  CAS  Google Scholar 

  64. Wang W, Ge J et al (2020) Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci Total Environ 708:134841

    Article  CAS  PubMed  Google Scholar 

  65. Scheurer M, Bigalke M (2018) Microplastics in Swiss floodplain soils. Environ Sci Technol 52(6):3591–3598

    Article  CAS  PubMed  Google Scholar 

  66. UNEP, UNEP frontiers 2016 report: Emerging issues of environmental concern; Nairobi, 2016

    Google Scholar 

  67. Farmer J, Zhang B et al (2017) Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing. Arch Agron Soil Sci 63(2):230–241

    Article  Google Scholar 

  68. Nizzetto L, Bussi G et al (2016) A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Process Impacts 18(8):1050–1059

    Article  CAS  PubMed  Google Scholar 

  69. Ziajahromi S, Neale PA et al (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99

    Article  CAS  PubMed  Google Scholar 

  70. Dris R, Gasperi J et al (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458

    Article  CAS  PubMed  Google Scholar 

  71. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46(12):6453–6454

    Article  CAS  PubMed  Google Scholar 

  72. Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull 58(8):1225–1228

    Article  CAS  PubMed  Google Scholar 

  73. Rochman CM, Hoh E et al (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3(1):1–7

    Article  Google Scholar 

  74. Besseling E, Quik JT et al (2017) Fate of nano- and microplastic in freshwater systems: a modeling study. Environ Pollut 220:540–548

    Article  CAS  PubMed  Google Scholar 

  75. Hodson ME, Duffus-Hodson CA et al (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721

    Article  CAS  PubMed  Google Scholar 

  76. Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7(1):1–6

    Article  CAS  Google Scholar 

  77. Zhu D, Bi QF et al (2018) Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environ Pollut 235:150–154

    Article  CAS  PubMed  Google Scholar 

  78. Ju H, Zhu D, Qiao M (2019) Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environ Pollut 247:890–897

    Article  CAS  PubMed  Google Scholar 

  79. Rodriguez-Seijo A, Lourenço J et al (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503

    Article  CAS  PubMed  Google Scholar 

  80. Zhu D, Chen QL et al (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem 116:302–310

    Article  CAS  Google Scholar 

  81. Barboza LGA, Vethaak AD et al (2018) Marine microplastic debris: an emerging issue for food security, food safety and human health. Mar Pollut Bull 133:336–348

    Article  CAS  PubMed  Google Scholar 

  82. Jeong CB, Won EJ et al (2016) Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ Sci Technol 50(16):8849–8857

    Article  CAS  PubMed  Google Scholar 

  83. Song Y, Cao C et al (2019) Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ Pollut 250:447–455

    Article  CAS  PubMed  Google Scholar 

  84. Deng Y, Zhang Y et al (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7(1):1–10

    Google Scholar 

  85. Yang L, Li K et al (2019) Removal of microplastics in municipal sewage from China's largest water reclamation plant. Water Res 155:175–181

    Article  CAS  PubMed  Google Scholar 

  86. Jin Y, Lu L et al (2019) Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 649:308–317

    Article  CAS  PubMed  Google Scholar 

  87. Lu L, Wan Z et al (2018) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631:449–458

    Article  PubMed  Google Scholar 

  88. Qi Y, Yang X et al (2018) Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    Article  CAS  PubMed  Google Scholar 

  89. Bosker T, Bouwman LJ et al (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    Article  CAS  PubMed  Google Scholar 

  90. Jiang C, Yin L et al (2019) Microplastic pollution in the rivers of the Tibet plateau. Environ Pollut 249:91–98

    Article  CAS  PubMed  Google Scholar 

  91. Trivedi J, Chhaya U (2021) Bioremediation of phenolic pollutant bisphenol A using optimized reverse micelles system of Trametes versicolor laccase in non-aqueous environment. 3 Biotech 11(6):1–14

    Article  Google Scholar 

  92. Chagas TQ, da Costa Araújo AP, Malafaia G (2021) Biomicroplastics versus conventional microplastics: an insight on the toxicity of these polymers in dragonfly larvae. Sci Total Environ 761:143231

    Article  CAS  PubMed  Google Scholar 

  93. da Costa Araújo AP, Malafaia G (2021) Microplastic ingestion induces behavioral disorders in mice: a preliminary study on the trophic transfer effects via tadpoles and fish. J Hazard Mater 401:123263

    Article  PubMed  Google Scholar 

  94. Jiang X, Chang Y et al (2020) Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environ Pollut 259:113896

    Article  CAS  PubMed  Google Scholar 

  95. Li Z, Li Q et al (2020) Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environ Sci Pollut Res 27:30306–30314

    Article  CAS  Google Scholar 

  96. Jiang X, Chen H et al (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838

    Article  CAS  PubMed  Google Scholar 

  97. Yang H, Yang T et al (2019) Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res 33(12):3140–3152

    Article  CAS  PubMed  Google Scholar 

  98. Lu K, Qiao R et al (2018) Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202:514–520

    Article  CAS  PubMed  Google Scholar 

  99. Lebreton LC, van Der Zwet J et al (2017) River plastic emissions to the world’s oceans. Nat Commun 8(1):1–10

    Article  Google Scholar 

  100. Cole M, Lindeque P et al (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655

    Article  CAS  PubMed  Google Scholar 

  101. Watts AJ, Lewis C et al (2014) Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48(15):8823–8830

    Article  CAS  PubMed  Google Scholar 

  102. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    Article  CAS  PubMed  Google Scholar 

  103. Awuchi CG, Awuchi CG (2019) Impacts of plastic pollution on the sustainability of seafood value chain and human health. Int J Adv Acad Res 5(11):46–138

    Google Scholar 

  104. Alimba CG, Faggio C (2019) Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol 68:61–74

    Article  CAS  PubMed  Google Scholar 

  105. Prokin AA, Dubov PG, Bolotov SE (2015) Formation of macroinvertebrates communities in duckweed (Lemnaceae) and artificial surface-floating substrate: results of the experiment under natural conditions. Inland Water Biol 8(4):373–383

    Article  Google Scholar 

  106. Besseling E, Wang B et al (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48(20):12336–12343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dovidat LC, Brinkmann BW et al (2020) Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth. Limnol Oceanograph Lett 5(1):37–45

    Article  Google Scholar 

  108. Cunha C, Paulo J et al (2019) Ecotoxicological and biochemical effects of environmental concentrations of the plastic-bond pollutant dibutyl phthalate on Scenedesmus sp. Aqua Toxicol 215:105281

    Article  CAS  Google Scholar 

  109. Zhang C, Chen X et al (2017) Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ Pollut 220L:1282–1288

    Article  Google Scholar 

  110. Kalčíková G, Skalar T et al (2020) An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res 175:115644

    Article  PubMed  Google Scholar 

  111. Xia X, Sun M et al (2020) Polyvinyl chloride microplastics induce growth inhibition and oxidative stress in Cyprinus carpio var. larvae. Sci Total Environ 716:136479

    Article  CAS  PubMed  Google Scholar 

  112. Guimarães ATB, Charlie-Silva I, Malafaia G (2021) Toxic effects of naturally-aged microplastics on zebrafish juveniles: a more realistic approach to plastic pollution in freshwater ecosystems. J Hazard Mater 407:124833

    Article  PubMed  Google Scholar 

  113. Cormier B, Gambardella C et al (2021) Chemicals sorbed to environmental microplastics are toxic to early life stages of aquatic organisms. Ecotoxicol Environ Safe 208:111665

    Article  CAS  Google Scholar 

  114. Yu H, Zhang X et al (2020) Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems. Environ Pollut 265:114830

    Article  CAS  PubMed  Google Scholar 

  115. Trestrail C, Walpitagama M et al (2020) Foaming at the mouth: ingestion of floral foam microplastics by aquatic animals. Sci Total Environ 705:135826

    Article  CAS  PubMed  Google Scholar 

  116. Shiu RF, Vazquez CI et al (2020) Nano-and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. Sci Total Environ 748:141469

    Article  CAS  PubMed  Google Scholar 

  117. Long M, Moriceau B et al (2015) Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar Chem 175:39–46

    Article  CAS  Google Scholar 

  118. Long M, Paul-Pont I et al (2017) Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ Pollut 228:454–463

    Article  CAS  PubMed  Google Scholar 

  119. Sjollema SB, Redondo-Hasselerharm P et al (2016) Do plastic particles affect microalgal photosynthesis and growth? Aqua Toxicol 170:259–261

    Article  CAS  Google Scholar 

  120. Enders K, Lenz R et al (2015) Abundance, size and polymer composition of marine microplastics≥ 10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull 100(1):70–81

    Article  CAS  PubMed  Google Scholar 

  121. Lee H, Shim WJ, Kwon JH (2014) Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci Total Environ 470:1545–1552

    Article  PubMed  Google Scholar 

  122. Revel M, Châtel A, Mouneyrac C (2018) Micro (nano) plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23

    Article  Google Scholar 

  123. Cox KD, Covernton GA et al (2019) Human consumption of microplastics. Environ Sci Technol 53(12):7068–7074

    Article  CAS  PubMed  Google Scholar 

  124. PlasticsEurope, 2019. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (accessed May 01, 2020)

  125. Allen S, Allen D et al (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12(5):339–344

    Article  CAS  Google Scholar 

  126. Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126

    Article  CAS  PubMed  Google Scholar 

  127. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    Article  CAS  PubMed  Google Scholar 

  128. Law BD, Bunn WB, Hesterberg TW (1990) Solubility of polymeric organic fibers and manmade vitreous fibers in gambles solution. Inhal Toxicol 2(4):321–339

    Article  CAS  Google Scholar 

  129. Washko RM, Day B et al (2000) Epidemiologic investigation of respiratory morbidity at a nylon flock plant. Am J Ind Med 38(6):628–638

    Article  CAS  PubMed  Google Scholar 

  130. Valavanidis A, Vlachogianni T et al (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10(9):3886–3907

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cho YJ, Park SB et al (2018) Bisphenol A modulates inflammation and proliferation pathway in human endometrial stromal cells by inducing oxidative stress. Reprod Toxicol 81:41–49

    Article  CAS  PubMed  Google Scholar 

  132. Pérez-Albaladejo E, Solé M and Porte C (2020) Plastics and plastic additives as inducers of oxidative stress. Curr Opin Toxicol

    Google Scholar 

  133. Abbas-Abadi MS, Jalali A et al (2020) The atmospheric, vacuum and pressurized pyrolysis of used bleaching soils along with polymeric wastes to reach the valuable and economical fuels. J Clean Prod 255:120328

    Article  CAS  Google Scholar 

  134. Chandra, Rustgi R (1998) Biodegradable polymers. Progress Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  135. Anunciado MB, Hayes DG et al (2021) Effect of environmental weathering on biodegradation of biodegradable plastic mulch films under ambient soil and composting conditions. J Polym Environ:1–16

    Google Scholar 

  136. Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag Res 35(2):132–140

    Article  PubMed  Google Scholar 

  137. Tokiwa Y, Calabia BP et al (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Park SY, Kim CG (2019) Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222:527–533

    Article  CAS  PubMed  Google Scholar 

  139. Auta HS, Emenike CU, Fauziah SH (2017) Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut 231:1552–1559

    Article  CAS  PubMed  Google Scholar 

  140. Auta HS, Emenike CU et al (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 127:15–21

    Article  CAS  PubMed  Google Scholar 

  141. Janssen PH, Yates PS et al (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68(5):2391–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yuan J, Ma J et al (2020) Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 715:136968

    Article  CAS  PubMed  Google Scholar 

  143. Pathak VM, Kumar N (2017) Implications of SiO 2 nanoparticles for in vitro biodegradation of low-density polyethylene with potential isolates of bacillus, pseudomonas, and their synergistic effect on Vigna mungo growth. Energy Ecol Environ 2(6):418–427

    Article  Google Scholar 

  144. Russell JR, Huang J et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yamada-Onodera K, Mukumoto H et al (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum. YK Polym Degrad Stabil 72(2):323–327

    Article  CAS  Google Scholar 

  146. Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21(2):575–579

    Article  CAS  Google Scholar 

  147. Zafar U, Houlden A, Robson GD (2013) Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl Environ Microbiol 79(23):7313–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee SY, Ten LN et al (2021) Biodegradative activities of fungal strains isolated from terrestrial environments in Korea. Mycobiology:1–9

    Google Scholar 

  149. Oviedo-Anchundia R, del Castillo DS et al (2021) Analysis of the degradation of polyethylene, polystyrene and polyurethane mediated by three filamentous fungi isolated from the Antarctica. African J Biotechnol 20(2):66–76

    Article  CAS  Google Scholar 

  150. DSouza GC, Sheriff RS et al (2021) Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions. Heliyon 7(5):e07008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chaudhary AK, Vijayakumar RP (2020) Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE). Environ Dev Sustain 22(2):1093–1104

    Article  Google Scholar 

  152. da Luz JMR, da Silva MDCS et al. (2019) Plastics polymers degradation by fungi. In Microorganisms. IntechOpen

    Google Scholar 

  153. Magnin A, Hoornaert L et al (2019) Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microbial Biotechnol 12(3):544–555

    Article  CAS  Google Scholar 

  154. Brunner I, Fischer M et al (2018) Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One 13(8):e0202047

    Article  PubMed  PubMed Central  Google Scholar 

  155. Munir E, Harefa RSM et al (2018) Plastic degrading fungi Trichoderma viride and aspergillus nomius isolated from local landfill soil in Medan. In IOP conference series: earth and environmental science. IOP Publishing 126(1):012145

    Google Scholar 

  156. Khan S, Nadir S et al (2017) Biodegradation of polyester polyurethane by aspergillus tubingensis. Environ Pollut 225:469–480

    Article  CAS  PubMed  Google Scholar 

  157. Ojha N, Pradhan N et al (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  158. Alshehrei F (2017) Biodegradation of low density polyethylene by fungi isolated from Red Sea water. Int J Curr Microbiol App Sci 6(8):1703–1709

    Article  Google Scholar 

  159. Álvarez-Barragán J, Domínguez-Malfavón L et al (2016) Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol 82(17):5225–5235

    Article  PubMed  PubMed Central  Google Scholar 

  160. Devi RS, Kannan VR et al (2015) Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar Pollut Bull 96(1–2):32–40

    Article  Google Scholar 

  161. Krueger MC, Hofmann U et al (2015) Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PLoS One 10(7):e0131773

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sheik S, Chandrashekar KR et al (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeter Biodegrad 105:21–29

    Article  CAS  Google Scholar 

  163. Sowmya HV, Krishnappa M, Thippeswamy B (2015) Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environ Dev Sustain 17(4):731–745

    Article  Google Scholar 

  164. Balasubramanian V, Natarajan K et al (2014) Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments. Environ Sci Pollut Res 21(21):12549–12562

    Article  CAS  Google Scholar 

  165. Tachibana K, Hashimoto K et al (2010) Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym Degrad Stab 95(6):912–917

    Article  CAS  Google Scholar 

  166. Ronkvist ÅM, Xie W et al (2009) Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules 42(14):5128–5138

    Article  CAS  Google Scholar 

  167. Friedrich J, Zalar P et al (2007) Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere 67(10):2089–2095

    Article  CAS  PubMed  Google Scholar 

  168. Nimchua T, Punnapayak H, Zimmermann W (2007) Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp pisi. Biotechnol J Healthcare Nutrit Technol 2(3):361–364

    CAS  Google Scholar 

  169. Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44(3):222–229

    Article  CAS  Google Scholar 

  170. Deguchi T, Kakezawa M, Nishida T (1997) Nylon biodegradation by lignin-degrading fungi. Appl Environ Microbiol 63(1):329–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang J, Gao D et al (2020) Biodegradation of polyethylene microplastic particles by the fungus aspergillus flavus from the guts of wax moth Galleria mellonella. Sci Total Environ 704:135931

    Article  CAS  PubMed  Google Scholar 

  172. Spina F, Tummino ML et al (2021) Low density polyethylene degradation by filamentous fungi. Environ Pollut 274:116548

    Article  CAS  PubMed  Google Scholar 

  173. Castiglia VC, Kuhar F (2015) Deterioration of expanded polystyrene caused by Aureobasidium pullulans var. melanogenum. Rev Argent Microbiol 47(3):256–260

    PubMed  Google Scholar 

  174. Yanto DHY, Krishanti NPRA et al (2019) Biodegradation of styrofoam waste by ligninolytic fungi and bacteria. In IOP conference series: earth and environmental science. IOP Publishing 308(1):012001

    Google Scholar 

  175. Othman AR, Hasan HA et al (2021) Microbial degradation of microplastics by enzymatic processes: a review. Environ Chem Lett 19(4):3057–3073

    Article  CAS  Google Scholar 

  176. Ali MI, Ahmed S et al (2014) Biodegradation of starch blended polyvinyl chloride films by isolated Phanerochaete chrysosporium PV1. Int J Environ Sci Technol 11(2):339–348

    Article  CAS  Google Scholar 

  177. Sumathi T, Viswanath B et al (2016) Production of laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochem Res Int

    Google Scholar 

  178. Mathur G, Prasad R (2012) Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil. Appl Biochem Biotechnol 167(6):1595–1602

    Article  CAS  PubMed  Google Scholar 

  179. Cosgrove L, McGeechan PL et al (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 73(18):5817–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Osman M, Satti SM et al (2018) Degradation of polyester polyurethane by aspergillus sp. strain S45 isolated from soil. J Polym Environ 26(1):301–310

    Article  CAS  Google Scholar 

  181. Chen WH, Vázquez-González M et al (2018) Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat Catal 1(9):689–695

    Article  CAS  Google Scholar 

  182. Austin HP, Allen MD et al (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci 115(19):E4350–E4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Delamarche E, Mattlet A et al (2020) Tailoring biodegradability of poly (butylene succinate)/poly (lactic acid) blends with a deep eutectic solvent. Front Mater 7:7

    Article  Google Scholar 

  184. Rodríguez-Seijo A, da Costa JP et al (2018) Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environ Sci Pollut Res 25(33):33599–33610

    Article  Google Scholar 

  185. McKeown P, Jones MD (2020) The chemical recycling of PLA: a review. Sustain Chem 1:1–22

    Article  Google Scholar 

  186. Crabbe JR, Campbell JR et al (1994) Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int Biodeter Biodegrad 33(2):103–113

    Article  Google Scholar 

  187. Nakajima-Kambe T, Shigeno-Akutsu Y (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51(2):134–140

    Article  CAS  PubMed  Google Scholar 

  188. Mohanan N, Montazer Z et al (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:2837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Gupte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, A., Prajapati, D., Gupte, A., Gupte, S. (2023). Microplastic Pollution: Sources, Environmental Hazards, and Mycoremediation as a Sustainable Solution. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_5

Download citation

Publish with us

Policies and ethics