Skip to main content

Advertisement

Log in

Biodegradable Microplastics: A Review on the Interaction with Pollutants and Influence to Organisms

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Biodegradable plastics attract public attention as promising substitutes for traditional nondegradable plastics which have caused the serious white pollution problem due to their persistence. However, even for biodegradable plastics, natual conditions for the rapid and complete degradation are rare. Even more serious is that biodegradable plastics might be disintegrated into microplastics more rapidly than tranditional plastics, emerging as another threat to the environment. Similar to traditional microplastics, biodegradable microplastics could adsorb many pollutants by various physicochemical effects and release additives. Biodegradable microplastics have been confirmed to be toxic to the organisms as particle matter and the vector as pollutants. Under some conditions, biodegradable microplastics may pose more severe negative impacts on the organisms. With the fierely increasing trend to replace the nondegradable plastic commodities with biodegradable ones, it is necessary to evaluate whether biodegradable plastics and the generated microplastics would alleviate plastic pollution or induce greater ecological impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alimi OS, Budarz JF, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52(4):1704–1724

    Article  CAS  Google Scholar 

  • Balestri E, Menicagli V, Ligorini V, Fulignati S, Raspolli Galletti AM, Lardicci C (2019) Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecol Ind 102:569–580

    Article  CAS  Google Scholar 

  • Bejgarn S, MacLeod M, Bogdal C, Breitholtz M (2015) Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 132:114–119

    Article  CAS  Google Scholar 

  • Černá T, Pražanová K, Beneš H, Titov I, Klubalová K, Filipová A, Klusoň P, Cajthaml T (2021) Polycyclic aromatic hydrocarbon accumulation in aged and unaged polyurethane microplastics in contaminated soil. Sci Total Environ 770:145254

    Article  CAS  Google Scholar 

  • Ding W, Li Z, Qi R, Jones DL, Liu Q, Liu Q, Yan C (2021) Effect thresholds for the earthworm Eisenia fetida: toxicity comparison between conventional and biodegradable microplastics. Sci Total Environ 781:146884

    Article  CAS  Google Scholar 

  • Fan X, Zou Y, Geng N, Liu J, Hou J, Li D, Yang C, Li Y (2021) Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process. J Hazard Mater 401:123363

    Article  CAS  Google Scholar 

  • Fritz J, Sandhofer M, Stacher C, Braun R (2003) Strategies for detecting ecotoxicological effects of biodegradable polymers in agricultural applications. Wiley, Hoboken, pp 397–410

    Google Scholar 

  • Gong W, Jiang M, Han P, Liang G, Zhang T, Liu G (2019) Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics. Environ Pollut 254:112927

    Article  CAS  Google Scholar 

  • Green DS (2016) Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ Pollut 216:95–103

    Article  CAS  Google Scholar 

  • Green DS, Boots B, Blockley DJ, Rocha C, Thompson R (2015) Impacts of Discarded Plastic Bags on Marine Assemblages and Ecosystem Functioning. Environ Sci Technol 49(9):5380–5389

    Article  CAS  Google Scholar 

  • Guo J-J, Huang X-P, Xiang L, Wang Y-Z, Li Y-W, Li H, Cai Q-Y, Mo C-H, Wong M-H (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263

    Article  CAS  Google Scholar 

  • Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Kristiansen K (2012) Bioplastics from renewable resources—next generation packaging materials. J Biol Chem 276(2):471–474

    Google Scholar 

  • Jin Y, Lu L, Tu W, Luo T, Fu Z (2019) Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 649:308–317

    Article  CAS  Google Scholar 

  • Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529

    Article  CAS  Google Scholar 

  • Klein K, Piana T, Lauschke T, Schweyen P, Dierkes G, Ternes T, Schulte-Oehlmann U, Oehlmann J (2021) Chemicals associated with biodegradable microplastic drive the toxicity to the freshwater oligochaete Lumbriculus variegatus. Aquat Toxicol 231:105723

    Article  CAS  Google Scholar 

  • Lambert S, Wagner M (2016) Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–517

    Article  CAS  Google Scholar 

  • Li R, Yi L, Sheng Y, Xiang Q, Cizdziel JV (2020) Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environ Pollut 260:113988

    Article  CAS  Google Scholar 

  • Liu GZ, Zhu ZL, Yang YX, Sun YR, Yu F, Ma J (2019) Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ Pollut 246:26–33

    Article  CAS  Google Scholar 

  • Lu X-M, Lu P-Z (2014) Characterization of bacterial communities in sediments receiving various wastewater effluents with high-throughput sequencing analysis. Microb Ecol 67(3):612–623

    Article  CAS  Google Scholar 

  • MacArthur DE, Waughray D, Stuchtey RM (2016) The new plastics economy: rethinking the future of plastics. World Economic Forum, Cologny

    Google Scholar 

  • Mccormick AR, Hoellein TJ, London MG, Hittie J, Scott JW, Kelly JJ (2016) Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere. https://doi.org/10.1002/ecs1002.1556

    Article  Google Scholar 

  • Meng F, Yang X, Riksen M, Xu M, Geissen V (2021) Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Sci Total Environ 755:142516

    Article  CAS  Google Scholar 

  • Menicagli V, Balestri E, Lardicci C (2019) Exposure of coastal dune vegetation to plastic bag leachates: A neglected impact of plastic litter. Sci Total Environ 683:737–748

    Article  CAS  Google Scholar 

  • Min L, Huang Z, Yang Y (2008) A Study on Status and developmental Trend of biodegradable Plastic Film. Chin Agric Sci Bull 24(9):439–443

    Google Scholar 

  • Muroi F, Tachibana Y, Kobayashi Y, Sakurai T, Kasuya KI (2016) Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym Degrad Stab 129:338–346

    Article  CAS  Google Scholar 

  • Napper IE, Thompson RC (2019) Environmental Deterioration of Biodegradable, Oxo-biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air Over a 3-Year Period. Environ Sci Technol 53(9):4775–4783

    Article  CAS  Google Scholar 

  • Nguyen DM, Do TVV, Grillet A-C, Thuc H, Thuc H, C.N (2016) Biodegradability of polymer film based on low density polyethylene and cassava starch. Int Biodeterior Biodegrad 115:257–265

    Article  CAS  Google Scholar 

  • Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    Article  CAS  Google Scholar 

  • Qi Y, Ossowicki A, Yang X, Lwanga EH, Dini-Andreote F, Geissen V, Garbeva P (2020) Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater 387:121711

    Article  CAS  Google Scholar 

  • Qin M, Chen C, Song B, Shen M, Cao W, Yang H, Zeng G, Gong J (2021) A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J Clean Prod 312:127816

    Article  CAS  Google Scholar 

  • RameshKumar S, Shaiju P, O’Connor KE (2020) Bio-based and biodegradable polymers—state-of-the-art, challenges and emerging trends. Curr Opin Green Sustain Chem 21:75–81

    Article  Google Scholar 

  • Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP, da Costa J, Duarte AC, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503

    Article  CAS  Google Scholar 

  • Rychter P, Biczak R, Herman B, Smylla A, Kurcok P, Adamus G, Kowalczuk M (2006) Environmental degradation of polyester blends containing atactic poly(3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules 7(11):3125–3131

    Article  CAS  Google Scholar 

  • Serrano-Ruíz H, Eras J, Martín-Closas L, Pelacho AM (2020) Compounds released from unused biodegradable mulch materials after contact with water. Polym Degrad Stab 178:109202

    Article  CAS  Google Scholar 

  • Serrano-Ruiz H, Martin-Closas L, Pelacho AM (2021) Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci Total Environ 750:141228

    Article  CAS  Google Scholar 

  • Shruti VC, Kutralam-Muniasamy G (2019) Bioplastics: Missing link in the era of Microplastics. Sci Total Environ 697:134139

    Article  CAS  Google Scholar 

  • Siracusa V, Blanco I (2020) Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 12(8):1641

    Article  CAS  Google Scholar 

  • Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J 49(10):2839–2858

    Article  CAS  Google Scholar 

  • Souza PMS, Corroqué NA, Morales AR, Marin-Morales MA, Mei LHI (2013) PLA and organoclays nanocomposites: degradation process and evaluation of ecotoxicity using Allium cepa as test organism. J Polym Environ 21(4):1052–1063

    Article  CAS  Google Scholar 

  • Spierling S, Knüpffer E, Behnsen H, Mudersbach M, Krieg H, Springer S, Albrecht S, Herrmann C, Endres H-J (2018) Bio-based plastics—a review of environmental, social and economic impact assessments. J Clean Prod 46:6855–6871

    Google Scholar 

  • Straub S, Hirsch PE, Burkhardt-Holm P (2017) Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int J Environ Res Public Health 14(7):774

    Article  CAS  Google Scholar 

  • Sun Y, Cao N, Duan C, Wang Q, Ding C, Wang J (2021) Selection of antibiotic resistance genes on biodegradable and non-biodegradable microplastics. J Hazard Mater 409:124979

    Article  CAS  Google Scholar 

  • Tao LA, Twa B, Feng CC, Cy A, Qiao CA, Fw D (2021) A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films. Ecotoxicol Environ Saf 209:111781

    Article  CAS  Google Scholar 

  • Wan T, Lu SH, Cheng W, Ren JH, Wang M, Hu BW, Jia ZY, Li Y, Sun YB (2019) A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions. Environ Pollut 249:398–405

    Article  CAS  Google Scholar 

  • Wang J, Lv S, Zhang M, Chen G, Luo Y (2016) Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151:171–177

    Article  CAS  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Sun Y (2020) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

    Article  CAS  Google Scholar 

  • Wang Y, Huang J, Zhu F, Zhou S (2021) Airborne microplastics: a review on the occurrence, migration and risks to humans. Bull Environ Contam Toxicol 107:1–8

    Article  CAS  Google Scholar 

  • Wei X-F, Bohlén M, Lindblad C, Hedenqvist M, Hakonen A (2021) Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res 198:117123

    Article  CAS  Google Scholar 

  • Weinstein JE, Dekle JL, Leads RR, Hunter RA (2020) Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters. Mar Pollut Bull 160:111518

    Article  CAS  Google Scholar 

  • Wright SL, Kelly FJ (2017) Plastic and Human Health: A Micro Issue? Environ Sci Technol 51(12):6634–6647

    Article  CAS  Google Scholar 

  • Zhang X, Xia M, Su X, Yuan P, Li X, Zhou C, Wan Z, Zou W (2021) Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J Hazard Mater 413:125321

    Article  CAS  Google Scholar 

  • Zimmermann L, Göttlich S, Oehlmann J, Wagner M, Völker C (2020) What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ Pollut 267:115392

    Article  CAS  Google Scholar 

  • Zou X, Niu W, Liu J, Li Y, Liang B, Guo L, Guan Y (2017) Effects of residual mulch film on the growth and fruit quality of tomato (Lycopersicon esculentum Mill.). Water Air Soil Pollut 228(2):71

    Article  CAS  Google Scholar 

  • Zuo L, Li H, Lin L, Sun Y, Diao Z (2019) Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere 215:25–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant 22006066), the Talent-Recruiting Program of Nanjing Institute of Technology (YKJ2019100), and the Open Fund from State Key Laboratory of Pollution Control and Resource Reuse of Nanjing University (PCRRF20038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anping Peng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, K., Ren, L. et al. Biodegradable Microplastics: A Review on the Interaction with Pollutants and Influence to Organisms. Bull Environ Contam Toxicol 108, 1006–1012 (2022). https://doi.org/10.1007/s00128-022-03486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03486-7

Keywords

Navigation