Skip to main content

Quantum Dots for Imaging and Its Safety

  • Chapter
  • First Online:
Biomedical Applications and Toxicity of Nanomaterials
  • 490 Accesses

Abstract

Recent years have witnessed a giant leap in the synthesis and studies of Quantum dots (QDs). With their remarkable photophysical properties, QDs have emerged as an essential material in material science research. QDs are multifaceted, with their applications ranging from optical to next-generation theranostics. In Biomedical research, visual analysis of cellular parameters plays a crucial role in understanding the mechanisms and cellular transport. Due to their high photostability and fluorescence intensity, they are inevitable in imaging applications. QDs can be used for long time imaging when compared to their conventional organic dyes. Moreover, they can be easily used for multiplex imaging that regular fluorescent dyes cannot achieve. QDs are extensively used for cellular and biomolecular imaging, tissue staining, and binding assays in vitro and tumor imaging and Deep tissue imaging in vivo. Various types of QDs with different elemental compositions are studied for their imaging applications. However, a lack of detailed understanding of their toxicity is still a significant concern. Hence, this chapter focuses on the various imaging applications of QDs and their potential safety issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Banerjee A, Pons T, Lequeux N, Dubertret B (2016) Quantum dots–DNA bioconjugates: synthesis to applications. Interface Focus 6(6):20160064

    Article  PubMed  PubMed Central  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Shin D-W, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang Y, Peng Z, Huang D, Li C, Wang Q (2019) Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Res 12(6):1321–1326

    Article  CAS  Google Scholar 

  • Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23(4):1974–1980

    Article  CAS  PubMed  Google Scholar 

  • Choi AO, Cho SJ, Desbarats J, Lovrić J, Maysinger D (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 5(1):1–13

    Article  Google Scholar 

  • Choy JC, Granville DJ, Hunt DWC, McManus BM (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33(9):1673–1690

    Article  CAS  PubMed  Google Scholar 

  • Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe) ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  CAS  Google Scholar 

  • Dennis AM, Rhee WJ, Sotto D, Dublin SN, Bao G (2012) Quantum dot–fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6(4):2917–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Di J, Xia J, Ji M, Wang B, Yin S, Huang Y, Chen Z, Li H (2016) New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl Catal B Environ 188:376–387

    Article  CAS  Google Scholar 

  • Du Y, Bing X, Tao F, Cai M, Li F, Zhang Y, Wang Q (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132(5):1470–1471

    Article  CAS  PubMed  Google Scholar 

  • Farahani JN, Pohl DW, Eisler H-J, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 95(1):017402

    Article  CAS  PubMed  Google Scholar 

  • Fouladi-Oskouei J, Shojaei S, Liu Z (2018) Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots. J Phys Condens Matter 30(14):145301

    Article  CAS  PubMed  Google Scholar 

  • Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19(9):1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Frangioni JV, Kim S-W, Ohnishi S, Kim S, Bawendi MG (2007) Sentinel lymph node mapping with type-II quantum dots. In: Quantum dots. Humana Press, Totowa, NJ, pp 147–159

    Google Scholar 

  • Gan C, Zhang Y, Battaglia D, Peng X, Xiao M (2008) Fluorescence lifetime of Mn-doped ZnSe quantum dots with size dependence. Appl Phys Lett 92(24):241111

    Article  Google Scholar 

  • Grützmacher D, Fromherz T, Dais C, Stangl J, Müller E, Ekinci Y, Solak HH et al (2007) Three-dimensional Si/Ge quantum dot crystals. Nano Lett 7(10):3150–3156

    Article  PubMed  Google Scholar 

  • Guo Y, Li J (2020) MoS2 quantum dots: synthesis, properties and biological applications. Mater Sci Eng C 109:110511

    Article  CAS  Google Scholar 

  • Haustein E, Schwille P (2007) Trends in fluorescence imaging and related techniques to unravel biological information. HFSP J 1(3):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holleitner AW, Decker CR, Qin H, Eberl K, Blick RH (2001) Coherent coupling of two quantum dots embedded in an Aharonov-Bohm interferometer. Phys Rev Lett 87(25):256802

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28(31):4717–4732

    Article  CAS  PubMed  Google Scholar 

  • Jeong S, Jung Y, Bok S, Ryu Y-M, Lee S, Kim Y-E, Song J et al (2018) Multiplexed in vivo imaging using size-controlled quantum dots in the second near-infrared window. Adv Healthc Mater 7(24):1800695

    Article  Google Scholar 

  • Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–111

    Article  CAS  PubMed  Google Scholar 

  • Kolahalam LA, Viswanath IVK, Diwakar BS, Govindh B, Reddy V, Murthy YLN (2019) Review on nanomaterials: synthesis and applications. Mater Today Proc 18:2182–2190

    Article  Google Scholar 

  • Kouwenhoven L, Marcus C (1998) Quantum dots. Phys World 11(6):35

    Article  CAS  Google Scholar 

  • Leatherdale CA, Woo W-K, Mikulec FV, Bawendi MG (2002) On the absorption cross section of CdSenanocrystal quantum dots. J Phys Chem B 106(31):7619–7622

    Article  CAS  Google Scholar 

  • Lee HU, Park SY, Lee SC, Choi S, Seo S, Kim H, Won J et al (2016) Black phosphorus (BP) nanodots for potential biomedical applications. Small 12(2):214–219

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li Y, Cheng J (2010) Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater 22(8):2451–2457

    Article  CAS  Google Scholar 

  • Li Y, Li Z, Wang X, Liu F, Cheng Y, Zhang B, Shi D (2012) In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates. Theranostics 2(8):769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K-F, Cheng H-M, Hsu H-C, Lin L-J, Hsieh W-F (2005) Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem Phys Lett 409(4–6):208–211

    Article  CAS  Google Scholar 

  • Liu X, Rui H, Lian H, Liu Y, Liu J, Liu J, Lin G et al (2015) Dual-color immunofluorescent labeling with quantum dots of the diabetes-associated proteins aldose reductase and Toll-like receptor 4 in the kidneys of diabetic rats. Int J Nanomedicine 10:3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Z, Zhang W, Tian J, Chen G, Liu Y, Liu R (2021) Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg Chem Front 8(4):880–897

    Article  CAS  Google Scholar 

  • Lovrić J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12(11):1227–1234

    Article  PubMed  Google Scholar 

  • Ma Q, Su X (2010) Near-infrared quantum dots: synthesis, functionalization and analytical applications. Analyst 135(8):1867–1877

    Article  CAS  PubMed  Google Scholar 

  • Montón H, Nogués C, Rossinyol E, Castell O, Roldán M (2009) QDs versus Alexa: reality of promising tools for immunocytochemistry. J Nanobiotechnol 7(1):1–10

    Article  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  • Ramasamy P, Kim N, Kang Y-S, Ramirez O, Lee J-S (2017) Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem Mater 29(16):6893–6899

    Article  CAS  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  PubMed  Google Scholar 

  • Rezaei G, Tanhaei MH (2016) Optical absorption coefficients and refractive index changes of an on-centerhydrogenic impurity in a multi-layered spherical quantum dot: Effects of external fields and geometrical size. Opt Quant Electron 48(1):73

    Article  Google Scholar 

  • Sangeetha VP, Smriti S, Solanki PR, Mohanan PV (2021) Mechanism of action and cellular responses of HEK293 cells on challenge with zwitterionic carbon dots. Colloids Surf B Biointerfaces 202:111698

    Article  CAS  PubMed  Google Scholar 

  • Shin YC, Song S-J, Lee YB, Kang MS, Lee HU, Jin-Woo O, Han D-W (2018) Application of black phosphorus nanodots to live cell imaging. Biomater Res 22(1):1–8

    Article  CAS  Google Scholar 

  • Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  PubMed  Google Scholar 

  • Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7(1):1–14

    Article  Google Scholar 

  • Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44(29):4550–4554

    Article  CAS  Google Scholar 

  • Wilkinson JM (2003) Nanotechnology applications in medicine. Med Device Technol 14(5):29–31

    CAS  PubMed  Google Scholar 

  • Xu H, Jing X, Wang X, Daqing W, Chen ZG, Wang AY (2013) Quantum dot-based, quantitative, and multiplexed assay for tissue staining. ACS Appl Mater Interfaces 5(8):2901–2907

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Pu P, Zhao J, Dong C, Gao C, Chen Y, Chen J, Liu Y, Zhou H (2015a) Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection. J Mater Chem A 3(2):542–546

    Article  CAS  Google Scholar 

  • Xu S, Li D, Peiyi W (2015b) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25(7):1127–1136

    Article  CAS  Google Scholar 

  • Xu G, Zeng S, Zhang B, Swihart MT, Yong K-T, Prasad PN (2016) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 116(19):12234–12327

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Li W, Ding L, Yang W, Xiao H, Ong W-J (2019) Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale 11(4):1475–1504

    Article  CAS  PubMed  Google Scholar 

  • Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, Huang Y et al (2017) Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29(15):1604847

    Article  Google Scholar 

  • Yan M, Zhang Y, Xu K, Fu T, Qin H, Zheng X (2011) An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology 282(3):94–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Yi D, Sun H, Zhang H (2014) Cadmium-based quantum dots: preparation, surface modification, and applications. J Nanosci Nanotechnol 14(2):1409–1424

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lai Z, Liu Z, Tan C, Huang Y, Li B, Zhao M, Xie L, Huang W, Zhang H (2015) A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew Chem Int Ed 54(18):5425–5428

    Article  CAS  Google Scholar 

  • Zhao J, Zhong D, Zhou S (2018) NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J Mater Chem B 6(3):349–365

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129(4):744–745

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120

    Article  Google Scholar 

  • Zhu C-N, Jiang P, Zhang Z-L, Zhu D-L, Tian Z-Q, Pang D-W (2013) Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl Mater Interfaces 5(4):1186–1189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere thanks to the Director and Head, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Trivandrum, for their support and for providing the infrastructure to carry out this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhil, Arathi, Megha, K.B., Joseph, X., Sangeetha, V.P., Mohanan, P.V. (2023). Quantum Dots for Imaging and Its Safety. In: Mohanan, P.V., Kappalli, S. (eds) Biomedical Applications and Toxicity of Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7834-0_18

Download citation

Publish with us

Policies and ethics