Skip to main content

Metabolomics as a Selection Tool for Abiotic Stress Tolerance in Crops

  • Chapter
  • First Online:
Translating Physiological Tools to Augment Crop Breeding

Abstract

Abiotic stresses cause aberrations in plant primary metabolism which alters the cell homeostasis. Plants try to maintain the metabolic homeostasis during stress by modifying the metabolic networks leading to the altered production of metabolites. Metabolites are more closely related to plant phenotype than the transcripts or proteins alone. Metabolomics reflect the overall combination of protein interaction, gene expression, and other plant regulatory mechanisms. Among all—omics methods, metabolomics is the most versatile, since it may be used to directly link to a phenotype, hence it can be a species or genotype specific character. In this chapter, we discuss various abiotic stresses affecting the plants and their metabolic responses specifically associated with stress tolerance. Most of the studies have elucidated the important role played by primary (sugars, amino acids, Proline, Putrescine, Spermine, GABA, Krebs cycle intermediates, etc.) and secondary metabolites (anthocyanins and flavonoids) in stress tolerance. Relative accumulation or non-accumulation of certain metabolites, phenotypic response along with the corresponding data of gene expression provides a way for identification of metabolomic QTLs (mQTLs) and metabolomic-assisted genome wide association study (mGWAS). Rapidly emerging fields of metabolomics, with mGWAS and mQTLs help in better selection of breeding lines and crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Farid IB, Marghany MR, Rowezek MM, Sheded MG (2020) Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants (Basel) 9(11):1626

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Hirata S, Sawada Y, Hirai MY, Sato S, Hirakawa H, Mine Y, Tanaka K, Shigyo M (2019) Widely targeted metabolome and transcriptome landscapes of Allium fistulosum–A. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Agarrwal R, Bentur JS, Nair S (2014) Gas chromatography mass spectrometry based metabolic profiling reveals biomarkers involved in rice-gall midge interactions. J Integr Plant Biol 56(9):837–848

    Article  CAS  PubMed  Google Scholar 

  • Albinsky D, Kusano M, Higuchi M, Hayashi N, Kobayashi M, Fukushima A, Mori M, Ichikawa T, Matsui K, Kuroda H, Horii Y (2010) Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Mol Plant 3(1):125–142

    Article  CAS  PubMed  Google Scholar 

  • Alla MMN, Khedr AHA, Serag MM, Abu-Alnaga AZ, Nada RM (2012) Regulation of metabolomics in Atriplexhalimus growth under salt and drought stress. Plant Growth Regul 67(3):281–304

    Article  Google Scholar 

  • Allwood JW, Clarke A, Goodacre R, Mur LA (2010) Dual metabolomics: a novel approach to understanding plant–pathogen interactions. Phytochemistry 71(5–6):590–597

    Article  PubMed  Google Scholar 

  • Anastasiadi M, Zira A, Magiatis P, Haroutounian SA, Skaltsounis AL, Mikros E (2009) 1H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data. J Agric Food Chem 57(23):11067–11074

    Article  CAS  PubMed  Google Scholar 

  • Barnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S, Paul ND, Bornman JF, Bais AF, Sulzberger B, Wilson SR, Andrady AL (2019) Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat Sustain 2(7):569–579

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Barupal DK, Fiehn O (2017) Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Beckles DM, Roessner U (2012) Plant metabolomics: applications and opportunities for agricultural biotechnology. In: Plant biotechnology and agriculture. Academic, Amsterdam, pp 67–81

    Chapter  Google Scholar 

  • Borrelli GM, Fragasso M, Nigro F, Platani C, Papa R, Beleggia R, Trono D (2018) Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. Plant Physiol Biochem 133:57–70

    Article  CAS  PubMed  Google Scholar 

  • Bowen BP, Northen TR (2010) Dealing with the unknown: metabolomics and metabolite atlases. J Am Soc Mass Spectrom 21(9):1471–1476

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Chen H, Chen J, Yang R, Zou L, Wang C, Chen J, Tan M, Mei Y, Wei L, Yin S (2020) Metabolomics characterizes the metabolic changes of Lonicerae Japonicae Flos under different salt stresses. PLoS One 15(12):e0243111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambiaghi A, Ferrario M, Masseroli M (2017) Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief Bioinform 18(3):498–510

    CAS  PubMed  Google Scholar 

  • Cao D, Lutz A, Hill CB, Callahan DL, Roessner U (2017) A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress. Front Plant Sci 7:2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJ (2013) Genetic analysis of metabolome–phenotype interactions: from model to crop species. Trends Genet 29(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H, Deshmukh R (2019) Advances in omics approaches for abiotic stress tolerance in tomato. Biology 8(4):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:1–14

    Article  CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58(15–16):4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Pluskal T, Aubry S, Weng JK (2018) Contribution of untargeted metabolomics for future assessment of biotech crops. Trends Plant Sci 23(12):1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto G (2018) Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone. Front Plant Sci 9:819

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):1–14

    Article  Google Scholar 

  • Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R (2012) Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Sci 182:49–58

    Article  PubMed  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6(2):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Willmitzer L (2012) Differential remodelling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982

    Article  CAS  PubMed  Google Scholar 

  • Dhatt BK, Abshire N, Paul P, Hasanthika K, Sandhu J, Zhang Q, Obata T, Walia H (2019) Metabolic dynamics of developing rice seeds under high night-time temperature stress. Front Plant Sci 10:1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudley E, Yousef M, Wang Y, Griffiths WJ (2010) Targeted metabolomics and mass spectrometry. Adv Protein Chem Struct Biol 80:45–83

    Article  CAS  PubMed  Google Scholar 

  • DuPont MS, Mondin Z, Williamson G, Price KR (2000) Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agric Food Chem 48:3957–3964

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee DY, Lu Y, Moon S, Nikolau B (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53(4):691–704

    Article  CAS  PubMed  Google Scholar 

  • Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, Paul P, Mishra SK, Tschiersch B, Theres K, Bovy A, Schleiff E (2016) HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol 170(4):2461–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraire-Velázquez S, Balderas-Hernández VE (2013) Abiotic stress in plants and metabolic responses. In: Abiotic stress—plant responses and applications in agriculture. InTechOpen, Rijeka, pp 25–48

    Google Scholar 

  • Fraser PD, Enfissi EM, Goodfellow M, Eguchi T, Bramley PM (2007) Metabolite profiling of plant carotenoids using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Plant J 49(3):552–564

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8(3):242–248

    Article  CAS  PubMed  Google Scholar 

  • Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Benina M, Obata T, Tohge T, Sujeeth N, Minkov I (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70:689–709

    Article  CAS  PubMed  Google Scholar 

  • Ghodke P, Khandagale K, Thangasamy A, Kulkarni A, Narwade N, Shirsat D, Randive P, Roylawar P, Singh I, Gawande SJ, Mahajan V (2020) Comparative transcriptome analyses in contrasting onion (Allium cepa L.) genotypes for drought stress. PLoS One 15(8):e0237457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22(5):245–252

    Article  CAS  PubMed  Google Scholar 

  • Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EA, António C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H (2018) Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 10(2):ply016

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P, De B (2017) Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signal Behav 12(7):e1335845

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrigan GG, Martino-Catt S, Glenn KC (2007) Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics 3(3):259–272

    Article  CAS  Google Scholar 

  • Hill CB, Taylor JD, Edwards J, Mather D, Langridge P, Bacic A, Roessner U (2015) Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–154

    Article  CAS  PubMed  Google Scholar 

  • Jochum GM, Mudge KW, Thomas RB (2007) Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am J Bot 94(5):819–826

    Article  CAS  PubMed  Google Scholar 

  • Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP (2021) Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plant 172(2):1106–1132

    Article  CAS  PubMed  Google Scholar 

  • Kermani SG, Saeidi G, Sabzalian MR, Gianinetti A (2019) Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chem 289:360–368

    Article  Google Scholar 

  • Keurentjes JJ (2009) Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol 12(2):223–230

    Article  CAS  PubMed  Google Scholar 

  • Khakimov B, Bak S, Engelsen SB (2014) High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives. J Cereal Sci 59(3):393–418

    Article  CAS  Google Scholar 

  • Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA (2019) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ 42(1):115–132

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Matsui A, Tanoi K, Kobayashi NI, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S, Bashir K (2017) Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3(7):1–7

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2007) Metabolomics and plant quantitative trait locus analysis—the optimum genetical genomics platform? In: Concepts in plant metabolomics. Springer, Dordrecht, pp 29–44

    Chapter  Google Scholar 

  • Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Sharma PK (2020) Soil salinity and food security in India. Front Sustain Food Syst 4:174

    Article  Google Scholar 

  • Latowski D, Kuczyńska P, Strzałka K (2011) Xanthophyll cycle—a mechanism protecting plants against oxidative stress. Red Rep 16:78–90

    Article  CAS  Google Scholar 

  • Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK (2017) The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J 89(1):85–103

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li Y, Zhang W, Li S, Gao Y, Ai X, Zhang D, Liu B, Li Q (2018) Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Anal Biochem 559:71–85

    Article  CAS  PubMed  Google Scholar 

  • Li X, Peng T, Mu L, Hu X (2019) Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: perspectives and challenges. Ecotoxicol Environ Saf 184:109602

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc 1(1):387–396

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Ford KL, Roessner U, Natera S, Cassin AM, Patterson JH, Bacic A (2013) Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics 13:2046–2062

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang B, Liu D, Zou C, Wu P, Wang Z, Wang Y, Li C (2020) Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC Plant Biol 20(1):1–21

    Google Scholar 

  • Luengwilai K, Saltveit M, Beckles DM (2012) Metabolite content of harvested micro-tom tomato (Solanum lycopersicum L.) fruit is altered by chilling and protective heat-shock treatments as shown by GC–MS metabolic profiling. Postharvest Biol Technol 63:116–122

    Article  CAS  Google Scholar 

  • Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, Yonemaru JI, Ebana K, Yano M, Saito K (2012) Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J 70(4):624–636

    Article  CAS  PubMed  Google Scholar 

  • Mibei EK, Owino WO, Ambuko J, Giovannoni JJ, Onyango AN (2018) Metabolomic analyses to evaluate the effect of drought stress on selected African Eggplant accessions. J Sci Food Agric 98(1):205–216

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks—using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13(2):126–131

    Article  PubMed  Google Scholar 

  • Mukhopadhyay R, Sarkar B, Jat HS, Sharma PC, Bolan NS (2021) Soil salinity under climate change: challenges for sustainable agriculture and food security. J Environ Manag 280:111736

    Article  CAS  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66(18):5467–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77(3):367–379

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Yang X, Zhu J, Liu Z, Ni Y, Wu H (2015) Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells. Plant Cell Tissue Organ Cult 122:239–248

    Article  CAS  Google Scholar 

  • Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Yousfi S, Araus JL, Cairns JE, Fernie AR (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169(4):2665–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Li Z, Dai S, Ding H, Wang Q, Li X, Ding G, Wang P, Guan Y, Liu W (2020) Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Sci Rep 10(1):1–16

    Article  Google Scholar 

  • Panda A, Rangani J, Parida AK (2021) Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. Plant Physiol Biochem 158:284–296

    Article  CAS  PubMed  Google Scholar 

  • Parry MA, Hawkesford MJ (2012) An integrated approach to crop genetic improvement F. J Integr Plant Biol 54(4):250–259

    Article  PubMed  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson M, Saarinen M, Nummelin L, Heiskanen J, Roitto M, Sarjala T, Laine J (2013) Tolerance of peat-grown Scots pine seedlings to waterlogging and drought: morphological, physiological, and metabolic responses to stress. For Ecol Manag 307:43–53

    Article  Google Scholar 

  • Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MK, Florian A, Krahnert I, Maurino VG, Araújo WL (2016) The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ 39(6):1304–1319

    Article  CAS  PubMed  Google Scholar 

  • Pyne ME, Narcross L, Martin VJ (2019) Engineering plant secondary metabolism in microbial systems. Plant Physiol 179(3):844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10(1):1–16

    Article  Google Scholar 

  • Rutley N, Miller G, Wang F, Harper JF, Miller G, Lieberman-Lazarovich M (2021) Enhanced reproductive thermotolerance of the tomato high pigment 2 mutant is associated with increased accumulation of flavonols in pollen. Front Plant Sci 12:779

    Article  Google Scholar 

  • Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M (2019) Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 10(1):1–9

    Article  Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7(16):2976–2996

    Article  CAS  PubMed  Google Scholar 

  • Sang Q, Shan X, An Y, Shu S, Sun J, Guo S (2017) Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress. Front Plant Sci 8:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24(4):447–454

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Patra B, Ray S, Majumder AL (2008) Inositol methyl transferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31:1442–1459

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Tarpley L, Duran AL, Kebrom TH, Sumner LW (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5(1):1–12

    Article  Google Scholar 

  • Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C, Sonnewald U, Hanemann A, Förster J, Ordon F, von Korff M (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J Exp Bot 68(7):1697–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Yamaguchi-Shinozaki K, Shinozaki K, Fernie AR, Sato M et al (2016a) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J 90:61–78

    Article  Google Scholar 

  • Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira KS, Takebayashi Y, Kojima M, Sakakibara H, Toyooka K (2016b) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J 90(1):61–78

    Article  Google Scholar 

  • Tuo XQ, Li S, Wu QS, Zou YN (2015) Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: changes in chlorophyll and proline metabolism. Sci Hortic 197:130–134

    Article  CAS  Google Scholar 

  • Ullah N, Yüce M, Gökçe ZNO, Budak H (2017) Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics 18:969

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay RK, Fatima T, Handa AK, Mattoo AK (2020) Polyamines and their biosynthesis/catabolism genes are differentially modulated in response to heat versus cold stress in tomato leaves (Solanum lycopersicum L.). Cell 9(8):1749

    Article  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477):295–297

    Article  PubMed  Google Scholar 

  • Verma A, Deepti S (2016) Abiotic stress and crop improvement: current scenario. Adv Plants Agric Res 4:00149

    Google Scholar 

  • Volkova PY, Geras’kin SA (2018) ‘Omic’technologies as a helpful tool in radioecological research. J Environ Radioact 189:156–167

    Article  CAS  PubMed  Google Scholar 

  • Voss-Fels KP, Stahl A, Wittkop B, Lichthardt C, Nagler S, Rose T, Chen TW, Zetzsche H, Seddig S, Majid Baig M, Ballvora A (2019) Breeding improves wheat productivity under contrasting agrochemical input levels. Nat Plants 5(7):706–714

    Article  PubMed  Google Scholar 

  • Wada H, Hatakeyama Y, Nakashima T, Nonami H, Erra-Balsells R, Hakata M, Nakata K, Hiraoka K, Onda Y, Nakano H (2020) On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17(10):1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54(1):669–689

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Fiehn O (2002) Can we discover novel pathways using metabolomic analysis? Curr Opin Biotechnol 13(2):156–160

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Yang X, Huo G, Ge G, Liu H, Luo L, Hu J, Huang D, Long P (2020) Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L.) in response to thermal stress as revealed by untargeted metabolomics analysis. Int J Mol Sci 21(4):1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5(2):401–417

    Article  CAS  PubMed  Google Scholar 

  • Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D’Amelia L, Dell’Aversana E, Piccolella S, Fuggi A, Carillo P (2016) Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant 159(3):290–312

    Article  PubMed  Google Scholar 

  • Zhang J, Zhang Y, Du Y, Chen S, Tang H (2011) Dynamic metabolomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904–1914

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Shivashankara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prathibha, M.D., Harsha, S.G., Geetha, G.A., Lokesha, A.N., Shivashankara, K.S. (2023). Metabolomics as a Selection Tool for Abiotic Stress Tolerance in Crops. In: Harohalli Masthigowda, M., Gopalareddy, K., Khobra, R., Singh, G., Pratap Singh, G. (eds) Translating Physiological Tools to Augment Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-19-7498-4_14

Download citation

Publish with us

Policies and ethics