Skip to main content

PTT-Based Micro and Nanocomposites: Methods of Preparation and Properties

  • Chapter
  • First Online:
Poly Trimethylene Terephthalate

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 122 Accesses

Abstract

Poly(trimethylene terephthalate) (PTT) is a recently introduced commercial polymer which blends the thermophysical and mechanical properties of polyethylene terephthalte (PET) and processability of polybutylene terepthalate (PBT). PTT is reinforced with different fillers to form composites to suite applications in different engineering fields. This chapter focuses on the various synthetic strategies adopted for the preparation of nano and microcomposites of PTT. The text reviews the reported changes in physical, mechanical, thermal, and electrical properties of various types of PTT-based nano and microcomposites with respect to conventional PTT material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashok RB, Srinivasa CV, Basavaraju B (2019) Dynamic mechanical properties of natural fiber composites—a review. Adv. Compos. Hybrid Mater. 2:586–607

    Article  Google Scholar 

  2. Bhat GS (1997) Plastics: materials and processing by A Brent Strong. Mater Manuf Process 12:560–562. https://doi.org/10.1080/10426919708935166

    Article  CAS  Google Scholar 

  3. Bodempudi AK, Vasanthan N (2018) Crystallization studies of poly(trimethylene terephthalate)/silica nanocomposites prepared by sol-gel technique. ACS Omega 3:17797–17804. https://doi.org/10.1021/acsomega.8b02816

    Article  CAS  Google Scholar 

  4. Chatterjee S, Wang JW, Kuo WS et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10. https://doi.org/10.1016/J.CPLETT.2012.02.006

    Article  CAS  Google Scholar 

  5. Chen K, Tang X, Chen S, Fu G (2004) Study on the macrokinetics of poly(trimethylene terephthalate) polycondensation reaction. J Appl Polym Sci 92:1765–1770. https://doi.org/10.1002/app.20138

    Article  CAS  Google Scholar 

  6. Das PP, Chaudhary V (2019) Tribological and dynamic mechanical analysis of bio-composites: a review. Mater Today Proc 729–734. Elsevier Ltd.

    Google Scholar 

  7. Diederichs E, Picard M, Chang BP et al (2021) Extrusion based 3D printing of sustainable biocomposites from biocarbon and poly(trimethylene terephthalate). Molecules 26:4164. https://doi.org/10.3390/molecules26144164

    Article  CAS  Google Scholar 

  8. Dwivedip R, Gupta A, Bhagyashreep P et al (2015) Investigation of mechanical, thermal and morphological behavior of cloisites-93a clay reinforced poly (trimethylene terephthalate) nanocomposites. Int J Sci Eng Appl Sci 263–271

    Google Scholar 

  9. Fabbri P, Bassoli E, Bon SB, Valentini L (2012) Preparation and characterization of poly (butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butylene terephthalate. Polymer (guildf) 53:897–902. https://doi.org/10.1016/J.POLYMER.2012.01.015

    Article  CAS  Google Scholar 

  10. Ferreira Braga N, Morales Zaggo H, Stieven Montagna L, Roberto Passador F (2020) Effect of carbon nanotubes (CNT) functionalization and maleic anhydride-grafted poly(trimethylene terephthalate) (PTT-g-MA) on the preparation of antistatic packages of PTT/CNT nanocomposites. J Compos Sci 4

    Google Scholar 

  11. Gao J, Wang D, Yu M, Yao Z (2004) Nonisothermal crystallization, melting behavior, and morphology of polypropylene/metallocene-catalyzed polyethylene blends. J Appl Polym Sci 93:1203–1210. https://doi.org/10.1002/app.20505

    Article  CAS  Google Scholar 

  12. Geethamma VG, Mathew KT, Lakshminarayanan R, Thomas S (1998) Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer (guildf) 39:1483–1491. https://doi.org/10.1016/S0032-3861(97)00422-9

    Article  CAS  Google Scholar 

  13. Gemmeke N, Feldmann M, Heim H-P (2019) Processing and characterization of engineering biocomposites based on polybutylenterephthalat (PBT) and polytrimethylentherephthalat (PTT) with regenerated cellulose fibers modified with maleic anhydride grafted polyethylene as a processing agent. Compos Part A Appl Sci Manuf 118:327–335. https://doi.org/10.1016/j.compositesa.2019.01.007

    Article  CAS  Google Scholar 

  14. Gupta A, Choudhary V (2014) Effect of multi-walled carbon nanotubes on mechanical and rheological properties of poly(trimethylene terephthalate). J Mater Sci 49:3839–3846. https://doi.org/10.1007/s10853-014-8097-3

    Article  CAS  Google Scholar 

  15. Gupta AK, Mohanty S, Nayak SK (2015) Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly(trimethylene terephthalate) hybrid nanocomposites. RSC Adv 5:56028–56036. https://doi.org/10.1039/c5ra07828h

    Article  CAS  Google Scholar 

  16. Gurmendi U, Eguiazabal JI, Nazabal J (2008) Structure and properties of nanocomposites with a poly(trimethylene terephthalate) matrix. Eur Polym J 44:1686–1695. https://doi.org/10.1016/j.eurpolymj.2008.04.001

    Article  CAS  Google Scholar 

  17. Fu H, Xu H, Liu Y, Yang Z, Kormakov S, DW, JS (2020) Overview of injection molding technology for processing polymers and their composites. ES Mater Manuf 8:3–23

    Google Scholar 

  18. Huang C-L, Wu H-H, Jeng Y-C, Liang W-Z (2019a) Electrospun graphene nanosheet-filled poly(Trimethylene Terephthalate) composite fibers: effects of the graphene nanosheet content on morphologies, electrical conductivity, crystallization behavior, and mechanical properties. Polymers (basel) 11:164. https://doi.org/10.3390/polym11010164

    Article  CAS  Google Scholar 

  19. Huang CL, Wu HH, Jeng YC, Liang WZ (2019b) Electrospun graphene nanosheet-filled poly(trimethylene terephthalate) composite fibers: effects of the graphene nanosheet content on morphologies, electrical conductivity, crystallization behavior, and mechanical properties. Polymers (Basel) 11. https://doi.org/10.3390/polym11010164

  20. Jacob S, Misra M, Mohanty AK (2012) Novel biocomposites from poly(trimethylene terephthalate) and recycled carbon fibres. J Mater Sci 47:6056–6065. https://doi.org/10.1007/s10853-012-6514-z

    Article  CAS  Google Scholar 

  21. Jiang Z, Diggle B, Tan ML et al (2020) Extrusion 3D printing of polymeric materials with advanced properties. Adv Sci 7:2001379

    Article  CAS  Google Scholar 

  22. Jones DS (1999) Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance. Int J Pharm 167–178

    Google Scholar 

  23. Kawai M, Yajima S, Hachinohe A, Kawase Y (2001) High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices. Compos Sci Technol 61:1285–1302. https://doi.org/10.1016/S0266-3538(01)00027-6

    Article  CAS  Google Scholar 

  24. Khan A, Savi P, Quaranta S et al (2017) Low-cost carbon fillers to improve mechanical properties and conductivity of epoxy composites. Polymers (Basel) 9. https://doi.org/10.3390/POLYM9120642

  25. Kim KJ, Ramasundaram S, Lee JS (2008) Synthesis and characterization of poly(trimethylene terephthalate)/polyhedral oligomeric silsesquixanes nanocomposites. Polym Compos 29:894–901. https://doi.org/10.1002/pc.20471

    Article  CAS  Google Scholar 

  26. Kiziltas A, Gardner DJ, Han Y, Yang HS (2011) Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. J Therm Anal Calorim 163–170

    Google Scholar 

  27. Kunjappan AM, Ramachandran AA, Padmanabhan M et al (2018) Selective localization of MWCNT in poly (Trimethylene Terephthalate)/poly ethylene blends: theoretical analysis, morphology, and mechanical properties. Macromol Symp 381:1800104. https://doi.org/10.1002/masy.201800104

    Article  CAS  Google Scholar 

  28. Liu D, McDaid AJ, Aw KC, Xie SQ (2011) Position control of an ionic polymer metal composite actuated rotary joint using iterative feedback tuning. Mechatronics 21:315–328. https://doi.org/10.1016/J.MECHATRONICS.2010.12.001

    Article  CAS  Google Scholar 

  29. Liu F, Zhong Y, Jiang C et al (2012) Studies on the viscoelasticity of poly(trimethylene terephthalate)/poly(ethylene–octene)/organomontmorillonite nanocomposites. Polym Compos 33:999–1006. https://doi.org/10.1002/pc.22234

  30. Liu S-J (2012) Injection molding in polymer matrix composites. In: Manufacturing techniques for polymer matrix composites (PMCs). Elsevier, pp 15–46

    Google Scholar 

  31. Liu W, Mohanty AK, Drzal LT et al (2005) Injection molded glass fiber reinforced poly(trimethylene terephthalate) composites: fabrication and properties evaluation. Ind Eng Chem Res 44:857–862. https://doi.org/10.1021/ie049112f

    Article  CAS  Google Scholar 

  32. Lynch JK (2015) High shear melt-processing of fiberglass-reinforced poly(trimethylene) terephthalate composites. J Appl Polym Sci 132. https://doi.org/10.1002/app.42714

  33. Ma Q, Cebe P (2010) Phase structure of electrospun poly(trimethylene terephthalate) composite nanofibers containing carbon nanotubes. J Therm Anal Calorim 102:425–434. https://doi.org/10.1007/s10973-010-0977-4

    Article  CAS  Google Scholar 

  34. Madathinal Kunjappan A, Reghunadhan A, Ramachandran AA et al (2021) Discussion on degree of entanglement, chain confinement, and reinforcement efficiency factor of <scp>PTT</scp>/<scp>PE</scp> blend nanocomposite embedded with <scp>MWCNTs</scp>. Polym Adv Technol 32:2916–2928. https://doi.org/10.1002/pat.5303

    Article  CAS  Google Scholar 

  35. Mallick PK (2007) Fiber-reinforced composites, 3rd edn. CRC Press

    Book  Google Scholar 

  36. Myllytie P, Misra M, Mohanty AK (2016) Carbonized lignin as sustainable filler in biobased poly(trimethylene terephthalate) polymer for injection molding applications. ACS Sustain Chem Eng 4:102–110. https://doi.org/10.1021/acssuschemeng.5b00796

    Article  CAS  Google Scholar 

  37. Nagarajan V, Mohanty AK, Misra M (2016) Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1:636–647. https://doi.org/10.1021/acsomega.6b00175

    Article  CAS  Google Scholar 

  38. Park S-J, Kim B-J (2005) Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng A 408:269–273. https://doi.org/10.1016/j.msea.2005.08.129

    Article  CAS  Google Scholar 

  39. Paszkiewicz S, Pawelec I, Szymczyk A et al (2015a) Effect of exfoliated graphite nanoplatelets’ size on the phase structure, electrical, and barrier properties of poly(trimethylene terephthalate)-based nanocomposites. Polym Eng Sci 55:2222–2230. https://doi.org/10.1002/PEN.24107

    Article  CAS  Google Scholar 

  40. Paszkiewicz S, Pawlikowska D, Kurcz M et al (2019) Functional properties of poly(Trimethylene Terephthalate)-block-poly(Caprolactone) based nanocomposites containing graphene oxide (GO) and reduced graphene oxide (rGO). Nanomaterials 9:1459. https://doi.org/10.3390/nano9101459

    Article  CAS  Google Scholar 

  41. Paszkiewicz S, Pawlikowska D, Szymczyk A et al (2018) Interfacial interactions in PTT–PTMO/polyhedral oligomeric silsesquioxane (POSS) nanocomposites and their impact on mechanical, thermal, and dielectric properties. Polym Bull 75:4999–5014. https://doi.org/10.1007/s00289-018-2317-y

    Article  CAS  Google Scholar 

  42. Paszkiewicz S, Szymczyk A, Janowska I et al (2017a) Comparative study on the properties of poly(trimethylene terephthalate)-based nanocomposites containing multi-walled carbon (MWCNT) and tungsten disulfide (INT-WS 2) nanotubes. Polym Adv Technol 28:645–657. https://doi.org/10.1002/pat.3964

    Article  CAS  Google Scholar 

  43. Paszkiewicz S, Szymczyk A, Livanov K et al (2015b) Enhanced thermal and mechanical properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. Express Polym Lett 9:509–524. https://doi.org/10.3144/expresspolymlett.2015.49

    Article  CAS  Google Scholar 

  44. Paszkiewicz S, Szymczyk A, Livanov K et al (2015c) Enhanced thermal and mechanical properties of poly(Trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. Express Polym Lett 9:509–524. https://doi.org/10.3144/expresspolymlett.2015.49

    Article  CAS  Google Scholar 

  45. Paszkiewicz S, Szymczyk A, Sui XM et al (2017b) Electrical conductivity and transparency of polymer hybrid nanocomposites based on poly(trimethylene terephthalate) containing single walled carbon nanotubes and expanded graphite. J Appl Polym Sci 134. https://doi.org/10.1002/app.44370

  46. Paszkiewicz S, Szymczyk A, Sui XM et al (2015d) Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos Sci Technol 118:72–77. https://doi.org/10.1016/j.compscitech.2015.08.011

    Article  CAS  Google Scholar 

  47. Patra S, Ajayan PM, Narayanan TN (2020) Dynamic mechanical analysis in materials science: The Novice’s Tale. Oxford Open Mater Sci 1. https://doi.org/10.1093/oxfmat/itaa001

  48. Picard M, Thakur S, Misra M et al (2020) Biocarbon from peanut hulls and their green composites with biobased poly(trimethylene terephthalate) (PTT). Sci Rep 10:3310. https://doi.org/10.1038/s41598-020-59582-3

    Article  CAS  Google Scholar 

  49. Poulin-Dandurand S, Pérez S, Revol J-F, Brisse F (1979) The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction. Polymer (guildf) 20:419–426. https://doi.org/10.1016/0032-3861(79)90064-8

    Article  CAS  Google Scholar 

  50. Prasad Reddy J, Misra M, Mohanty A (2013) Renewable resources-based PTT [poly(trimethylene terephthalate)]/switchgrass fiber composites: the effect of compatibilization. Pure Appl Chem 85:521–532. https://doi.org/10.1351/PAC-CON-12-04-05

    Article  CAS  Google Scholar 

  51. Ramachandran AA, Mathew LP, Thomas S (2019) Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur Polym J 118:595–605. https://doi.org/10.1016/j.eurpolymj.2019.06.027

    Article  CAS  Google Scholar 

  52. Run M, Li X, Song H, Wang Z (2010) Studies on the morphological, rheological, electrical, mechanical and thermal properties of the PTT/SCF composites. J Thermoplast Compos Mater 23:765–777. https://doi.org/10.1177/0892705709355229

    Article  CAS  Google Scholar 

  53. Run M, Song H, Hao Y et al (2009a) Preparation, structure, and properties of the PTT/SGF composites. Polym Compos 30:776–781. https://doi.org/10.1002/pc.20617

  54. Run M, Song H, Wang S et al (2009) Crystal morphology, melting behaviors and isothermal crystallization kinetics of SCF/PTT composites. Polym Compos 30:87–94. https://doi.org/10.1002/pc.20536

    Article  CAS  Google Scholar 

  55. Run M, Yao C, Wang Y, Gao J (2007) Isothermal crystallization kinetics and melting behaviors of nanocomposites of poly(trimethylene terephthalate) filled with nano-CaCO3. J Appl Polym Sci 106:1557–1567. https://doi.org/10.1002/app.24996

  56. Run M, Zhang H, Li X, Cui F (2011) Preparation and properties of the PTT/ABS/SCF composites. In: Advanced materials research, pp 838–841

    Google Scholar 

  57. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    Article  CAS  Google Scholar 

  58. Sabu T, Joseph K, Malhotra SK et al (2012) Polymer composites, volume 1, macro- and microcomposites

    Google Scholar 

  59. Sarathchandran C, Chan CH, Abdul Karim SR, Thomas S (2014) Poly(Trimethylene terephthalate)-the new generation of engineering thermoplastic polyester. In: Physical chemistry of macromolecules: macro to nanoscales. Apple Academic Press, pp 573–618

    Google Scholar 

  60. Saroia J, Wang Y, Wei Q et al (2020) A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol 106:1695–1721

    Article  Google Scholar 

  61. Scheirs J, Long TE (2005) Modern polyesters: chemistry and technology of polyesters and copolyesters. Google Books

    Google Scholar 

  62. Sharma R, Jain P, Dey Sadhu S (2018) Study of morphological and mechanical properties of PBT/PTT blends and their nanocomposites and their correlation. Arab J Sci Eng 442 44:1137–1150. https://doi.org/10.1007/S13369-018-3424-7

  63. Shaw A, Sriramula S, Gosling PD, Chryssanthopoulos MK (2010) A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis. Compos Part B Eng 41:446–453. https://doi.org/10.1016/J.COMPOSITESB.2010.05.005

    Article  Google Scholar 

  64. Sheikholeslami SN, Rafizadeh M, Taromi FA, Bouhendi H (2014) Synthesis and characterization of poly(trimethylene terephthalate)/organoclay nanocomposite via in situ polymerization. J Thermoplast Compos Mater 27:1530–1552. https://doi.org/10.1177/0892705712475000

    Article  CAS  Google Scholar 

  65. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  66. Szymczyk A (2012) Poly(trimethylene terephthalate-block-tetramethylene oxide) elastomer/single-walled carbon nanotubes nanocomposites: synthesis, structure, and properties. J Appl Polym Sci 126:796–807. https://doi.org/10.1002/app.36961

    Article  CAS  Google Scholar 

  67. Szymczyk A, Paszkiewicz S, Typek J et al (2019) Magnetic properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) copolymer nanocomposites reinforced by graphene oxide–Fe 3 O 4 hybrid nanoparticles. Phys Status Solidi 216:1900402. https://doi.org/10.1002/pssa.201900402

    Article  CAS  Google Scholar 

  68. Vivekanandhan S, Misra M, Mohanty AK (2012) Thermal, mechanical, and morphological investigation of injection molded poly(trimethylene terephthalate)/carbon fiber composites. Polym Compos 33:1933–1940. https://doi.org/10.1002/pc.22333

    Article  CAS  Google Scholar 

  69. Wang J, Wang C, Song HZ, Run MT (2013) Dynamic rheological and dynamic thermomechanical properties of poly(trimethylene terephthalate)/short carbon fibre composites. Compos Interfaces 20:355–363. https://doi.org/10.1080/15685543.2013.806116

    Article  CAS  Google Scholar 

  70. Wang L, Li S, Li G (2011a) Study on structure and rheological properties of PET/PTT/MMT nanocomposites. In: Advanced materials research. Trans Tech Publications Ltd, pp 1814–1818

    Google Scholar 

  71. Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6:510–530. https://doi.org/10.1016/j.nantod.2011.08.004

    Article  CAS  Google Scholar 

  72. Wang X, Jiang M, Zhou Z et al (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458

    Article  CAS  Google Scholar 

  73. Wu C-S (2009) Synthesis and characterization of poly(trimethylene terephthalate) nanocomposites incorporating multi-walled carbon nanotubes. J Appl Polym Sci 114:1633–1642. https://doi.org/10.1002/app.30754

  74. Yang HS, Kim HJ, Park HJ et al (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77:45–55. https://doi.org/10.1016/J.COMPSTRUCT.2005.06.005

    Article  Google Scholar 

  75. Yao C, Yang G (2009) Synthesis, thermal, and rheological properties of poly(trimethylene terephthalate)/BaSO4 nanocomposites. Polym Adv Technol 20:768–774. https://doi.org/10.1002/pat.1313

  76. Zhang J (2004) Study of poly(trimethylene terephthalate) as an engineering thermoplastics material. J Appl Polym Sci 91:1657–1666. https://doi.org/10.1002/app.13322

    Article  CAS  Google Scholar 

  77. Zhang J, Wu L, Zhao M et al (2005) Effects of nucleating agents on physical properties of poly(trimethylene terepnthalate)/glass-fiber composites. J Appl Polym Sci 96:883–893. https://doi.org/10.1002/app.21527

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, A., Krishnakumar, S. (2023). PTT-Based Micro and Nanocomposites: Methods of Preparation and Properties. In: Ajitha, A.R., Thomas, S. (eds) Poly Trimethylene Terephthalate. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7303-1_5

Download citation

Publish with us

Policies and ethics