Skip to main content

Comparative Study of Physical, Chemical, and Dyeing Performances of PET, PTT, and PET/PTT Bicomponent Filaments

  • Chapter
  • First Online:
Poly Trimethylene Terephthalate

Abstract

The chapter is devoted to presenting an open review about a comparative study on physical and chemical properties of used polyester types such as polyethylene terephthalate (PET), poly(trimethylene terephthalate) (PTT), and bicomponent filaments of PET and PPT. A general summary of polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) were described their reaction mechanism as well as by the determination of important properties in terms of morphological, mechanical, chemical, and thermal behavior. The second part of this work was allowed to the description of the synthesis and characterization as well as the advantage of use of bicomponent polyester filaments in industrial scale. The third part was focused especially on bicomponent filaments (60% PET, 40% PTT) in terms of spinning and their effect on dyeing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahir SV, Tajbakhsh AR, Terentjev EM (2006) Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Func Mater 16(4):556–560

    Article  CAS  Google Scholar 

  2. Awaja F, Pavel D (2005) Recycling of PET. Eur Polymer J 41(7):1453–1477

    Article  CAS  Google Scholar 

  3. Bansal S, Raichurkar P (2016) Review on the manufacturing processes of polyester-PET and nylon-6 filament yarn. Int J Text Eng Process 2:23–28

    Google Scholar 

  4. Behera BK, Singh MK (2013) Role of filament cross-section in properties of PET multifilament yarn and fabric. Part II: effect of fiber cross-sectional shapes on fabric hand. J Text Inst 105(4):365–376

    Google Scholar 

  5. Braun H (1983) Particle size and solubility of disperse dyes. Revues Prog Color 13:62–72

    CAS  Google Scholar 

  6. Broadbent AD (2001) Basic principles of textile coloration. Society of Dyers and Colourists, Sherbrooke, pp 301–331

    Google Scholar 

  7. Burkinshaw SM (1995) Chemical principles of synthetic fibre dyeing. Blackie Academic & Professional, London, pp 1–76

    Book  Google Scholar 

  8. Carrion-Fité FJ (1995) Dyeing polyester at low temperatures: kinetics of dyeing with disperse dyes. Text Res J 65(6):362–368

    Google Scholar 

  9. Chen K (2001) Structure and properties of PTT fibers. Synth Fiber Ind 24(6):37–40

    Google Scholar 

  10. Chen PB (1999) Determination of colour sensitivity for the dyeing of disperse dyes. Thèse, Université Polytechnique de Hong-Kong

    Google Scholar 

  11. Chen Y, Takarada W, Kikutani T (2016) Effect of cross-sectional configuration on fiber formation behavior in the vicinity of spinning nozzle in bicomponent melt spinning process. J Fiber Sci Technol 72(7):154–159

    Article  Google Scholar 

  12. Chung WT, Yeh WJ, Hong PD (2002) Melting behaviour of poly(trimethylene terephthalate). J Appl Polym Sci 83:2426–2433

    Article  CAS  Google Scholar 

  13. Chuah HH (2001) Orientation and structure development in poly(trimethylene terephthalate) tensile drawing. Macromolecules 34:6985–6993

    Article  CAS  Google Scholar 

  14. Chuah HH (2003) Polytrimethylene terephthalate. In: Encyclopedia of polymer science and technology, 3rd edn, vol 3. Wiley, New York, pp 544–557

    Google Scholar 

  15. Cook JG, Hugill HPW (1948) Low A.R. Imperial Chemical Industries Ltd., GB Patent, 604073

    Google Scholar 

  16. Daubeny R, Bunn CW (1954) The crystal structure of polyethylene terephthalate. Proc R Soc A Math Phys Eng Sci 226:531–542

    CAS  Google Scholar 

  17. Dhamija S, Kothari VK, Varshney RK (2011) Effect of polyester fibre fineness and cross-sectional shape on physical characteristics of yarns. J Text Inst 102(4):293–307

    Google Scholar 

  18. Donelli I, Freddi G, Nierstrasz V, Taddei P (2010) Surface structures and properties of poly-(ethylene terephthalate) hydrolysed by alkali and cutinase. Polym Degrad Stab 95:1542–1550

    Article  CAS  Google Scholar 

  19. Dupont G (2002) la teinture, les éditions de l’industrie textile. Paris, pp 219–241

    Google Scholar 

  20. Dupeuble JC (2001) Technologies for the PBT, PTT and PET supply chain. Chem Fibers Int 51(1):43–44

    CAS  Google Scholar 

  21. East AJ (2009) Chapter 6, The structure of polyester fibers Handbook of textile fibres structure volume 1: fundamentals and manufactured polymer fibers. Woodhead Publishing Limited and CRC Press, Cambridge, UK, pp 181–225

    Google Scholar 

  22. Etters JN (1994) Kinetics of disperse dye sorption: implications for quality control. Am Dyestuffs Reprod 83(9):42–48

    CAS  Google Scholar 

  23. Fern A, Hadfield HR (1955) Recent progress in the dyeing of terylene polyester fibres. J Soc Dyers Colour 71:840–856

    Article  CAS  Google Scholar 

  24. Fitzgerald WE, Knudsen JP (1967) Mixed stream spinning of bicomponent fibers. Text Res J 37(6):447–453

    Article  Google Scholar 

  25. Fortess F, Salvin VS (1958) Factors influencing the dyeing of acetate fibers with disperse nonionic dyes. Text Res J 28(12):1009–1021

    Article  CAS  Google Scholar 

  26. Fumei W, Fei G, Bugao X (2013) Elastic strain of PTT/PET self-crimping fibers. J Eng Fibers Fabr 8:50–55

    Google Scholar 

  27. Giardin CJ (2002) E. I. Du Pont de Nemours & Co., Inc., Us Patent 6 353 062, March 2002

    Google Scholar 

  28. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482

    Google Scholar 

  29. Haas T (1994) Degussa AG, US Patent 5 334 778

    Google Scholar 

  30. Hernandez IA, Hietpas GD, Howell JM, Schultze C (2002) Poly(trimethylene terephthalate) tetrachannel cross-section staple, US Patent 6,458,455B1

    Google Scholar 

  31. Hiemenz PC, Lodge TP (2007) Polymer chemistry, 2nd edn. CRC Press, Boca Raton, Florida, pp 215–228

    Google Scholar 

  32. Hoe H (1998) Corterra a new polyester fiber. Text Mag 2(1):12–14

    Google Scholar 

  33. Hong PD, Chung WT, Hsu CF (2002) Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer 43:3335–3343

    Article  CAS  Google Scholar 

  34. Hoo K (2004) Contribution à la modélisation, à l’identification et à la simulation d’un procédé de teinture des microfibres de PET, Mémoire de Thèse en génie textile, Université de sciences et technologies de Lille

    Google Scholar 

  35. Hori T, Sato Y, Shimizu T (1981) Contribution of swelling, dye affinity, glass transition temperature and other factors to the experimental diffusion coefficient of a dye into polyethylene terephtalate from various solvents. J Soc Dyers Colour 97(1):6–13

    Google Scholar 

  36. Houck MM (2009) Identification of textiles fibers. The Textile Institute, Washington, DC, pp 75–79

    Book  Google Scholar 

  37. Hu J, Lu J, Zhu Y (2008) New developments in elastic fibers. Polym Rev 48:275–301

    Google Scholar 

  38. Hudson S (1995) Theory and practice of fiber formation. NCSU, United States

    Google Scholar 

  39. Hwo C, Forschner T, Lowtan R, Gwyn D, Criste B (1998) Poly(trimethylene phthalates or naphthalate) and copolymers: new opportunities in film and packaging applications. Presented at the Future-Pak® 98 conference, November 10–12

    Google Scholar 

  40. Hwo C, Brown H (2000) Opportunities of corterra PTT fibers in textiles. Chem Fibers Int 50(2):53–55

    CAS  Google Scholar 

  41. Ingamells W, Peters RH, Thomton SR (1973) The mechanism of carrier dyeing. J Appl Polym Sci 17:3733–3746

    Google Scholar 

  42. Iskender MA, Becerir B, Koruyucu A (2005) Carrier dyeing of different energy level disperse dyes on polyester fabric. Text Res J 75(6):462–465

    Article  CAS  Google Scholar 

  43. Jeong HM, Ahn BK, Cho SM & Kim BK (2000) Water vapor permeability of shape memory polyurethane with amorphous reversible phase, J Polym Sci B Polym Phys 38(23):3009–3017https://doi.org/10.1002/1099-0488(20001201)

  44. Jin L, Fumei W, Bugao X (2010) Factors affecting crimp configuration of PTT/PET bi-component filaments. Text Res J 81(5):538–544

    Article  Google Scholar 

  45. Johnson A (1989) The theory of coloration of textiles, 2nd edn. Society of Dyers and Colourists

    Google Scholar 

  46. Joon HK, Sung SY, Samuel MH (2011) Comparison of the structure-property relationships for PTT and PET fibers spun at various take-up speeds. Fibers Polym 12:771–777

    Article  Google Scholar 

  47. Kathiervelu S (2002) Polytrimethylene terephthalate (PTT) fibres. Synth Fibers 31(4):11–12

    Google Scholar 

  48. Kitagawa T, Yabuki K, Young R (2001) An investigation into the relationship between processing structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression. Polymer 42(5):2101–2112

    Google Scholar 

  49. Kurian JV, Liang YEI (2001) Du Pont de Nemours & Co., Inc., Us Patent 6 281325

    Google Scholar 

  50. Laurich SA (1969) Chevron Research, US Patent 3 467 724

    Google Scholar 

  51. Lee MS, Oh TH, Kim SY, Shim HJ (1999) Deformation kinetics of polypropylene hollow fibers in a continuous drawing process. J Appl Polym Sci 74(7):1836–1845

    Article  CAS  Google Scholar 

  52. Lindberg J (1953) Relationship between various surface properties of wool fibers: part III: sorption of dyes and acids in wool fibers. Text Res J 26:528

    Google Scholar 

  53. Liu X, Jiao S, Wang FM (2012) Configuring the spinning technology of PTT/PET bicomponent filaments according to fabric elasticity. Text Res J 83(5):487–498. https://doi.org/10.1177/0040517512447584

    Article  Google Scholar 

  54. Matsudaira M, Tan Y, Kondo Y (1993) The effect of fibre cross-sectional shape on fabric mechanical properties and handle. J Text Inst 84(3):76–386

    Google Scholar 

  55. Millson HE (1955) Microscopical dyeing phenomena, studies with the microdyeoscope. Am Dyestuff Reporter 44:417

    Google Scholar 

  56. Mercier JP (1996) Ernest Maréchal, livre chimie des polymères: synthèse, réaction, dégradation par. PPUR Presses Polytechnique, Suisse, pp 285–352

    Google Scholar 

  57. Merian E, Carbonell J, Lerch U, Sanahuja V (1963) The saturation values rates of dyeing rates of diffusion and migration of disperse dyes on heat‐set polyester fibres. J Soc Dye Colour 79(11):505–515. https://doi.org/10.1111/j.1478-4408.1963.tb02513.x

    Article  CAS  Google Scholar 

  58. Moore CL, Bruck HA (2002) A fundamental investigation into large strain recovery of one-way shape memory alloy wires embedded in flexible polyurethane. Smart Mater Struct 11:130–139

    Article  CAS  Google Scholar 

  59. Mukhopadhyay S (2014) Chapter 6, Bi-component and bi-constituent spinning of synthetic polymer fibres. In: Advances in filament yarn spinning of textiles and polymers. Woohead Publishing, pp 113–127

    Google Scholar 

  60. Naeimirad M, Zadhoush A, Kotek R, Esmaeely Neisiany R, Nouri Khorasani S, Ramakrishna S (2018) Recent advances in core/shell bicomponent fibers and nanofibers: a review. J Appl Polym Sci 135:1–23

    Article  Google Scholar 

  61. Oh TH (2006) Studies on melt spinning process of hollow polyethylene terephthalate fibers. Polym Eng Sci 46:609–616

    Article  CAS  Google Scholar 

  62. Oh TH (2006) Melt spinning and drawing process of PET side-by-side bicomponent fibers. J Appl Polym Sci 101:1362–1367

    Article  CAS  Google Scholar 

  63. Oh TH (2006) Effects of spinning and drawing conditions on the crimp correction of side-by side poly (trimethylene terephthalate) bicomponent fiber. J Appl Polym Sci 102:1322–1327

    Article  CAS  Google Scholar 

  64. Ohishi T, Otsuka H (2014) PET (Poly(ethylene terephthalate)) and PTT (Poly(trimethylene terephthalate)). Encycl Polym Nanomaterials 1–5

    Google Scholar 

  65. Pasquet V, Perwuelz A, Behary N, Isaad J (2013) Vanillin, a potential carrier for low temperature dyeing of polyester fabrics. J Clean Prod 43:20–26

    Article  CAS  Google Scholar 

  66. Parthiban M, Vellingiri K (2008) PTT—innovative polymer and its application in textiles. Chem Fibers Int 58:153–156

    Google Scholar 

  67. Piccinini P, Senaldi C (2011) Fiber labelling elastomultiester-Dupont final report administrative arrangement N. 2003-21200, JRC scientific and technical reports

    Google Scholar 

  68. Piccinini P, Senaldi C, Alberto-Lopes F (2013) Fiber labelling polytrimethylene terephthalate-ptt-du pont. Intermediate report administrative arrangement n. 2011-32490. JRC scientific and technical reports

    Google Scholar 

  69. Pyda M, Boller A, Grebowicz J, Chuah H, Lebedev BV, Wunderlich B (1998) Heat capacity of poly(trimethylene terephthalate). J Polym Sci Part B Polym Phys 36:2499–2511

    Article  CAS  Google Scholar 

  70. Reese G (2003) Polyester fibers. In: Encyclopedia of polymer science and technology, 3rd edn, vol 3. Wiley, New York, pp 652–678

    Google Scholar 

  71. Rwei SP, Lin YT, Su YY (2005) Study of self-crimp polyester fibers. Polym Eng Sci 45(6):838–845

    Article  CAS  Google Scholar 

  72. Shamey R, Shim WS (2011) Assessment of key issues in the coloration of polyester material. Text Prog 43:97–153

    Article  Google Scholar 

  73. Shore J (1990) Colorants and auxiliaries volume 2: auxiliaries. Society of Dyers and Colourists

    Google Scholar 

  74. So YH (2000) Rigid-rod polymers with enhanced lateral interactions. Prog Polym Sci 25(1):137–157

    Article  CAS  Google Scholar 

  75. Souissi M, Khiari R, Zaag M, Meksi N, Dhaouadi H (2020) Effect of the morphology of polyesters filaments on their physical properties and dyeing performances. Polym Bull 78:2685–2707

    Google Scholar 

  76. Souissi M, Khiari R, Haddar W, Zaag M, Meksi N, Dhaouadi H (2020) Dyeing of innovative bicomponent filament fabrics (PET/PTT) by disperse dyestuffs: characterization and optimization process. Processes 8(5):501

    Article  CAS  Google Scholar 

  77. Souissi M, Khiari R, Zaag M, Meksi N, Dhaouadi H (2021) Ecological and cleaner process for dyeing bicomponent polyester filaments (PET/PTT) using ecological carriers: analysis of dyeing performance. RSC Adv 11(42):25830–25840

    Article  CAS  Google Scholar 

  78. Takarada W, Ito H, Kikutani T, Okui N (2001) Studies on high-speed melt spinning of noncircular cross- section fibers. I. Structural analysis of as-spun fibers. J Appl Polym Sci 80(9):1575–1581

    Google Scholar 

  79. Tavanaie MA, Shoushtari AM, Goharpey F (2010) Polypropylene/poly (butylene terephthalate) melt spun alloy fibers dyeable with carrier-free exhaust dyeing as an environmentally friendlier process. J Clean Prod 18(18):1866–1871

    Article  CAS  Google Scholar 

  80. Teli MD, Kale RD, Latika B (2016) Low temperature dyeing of PET/PTT blend fibers. Adv Appl Sci Res 7(3), 13–19

    Google Scholar 

  81. Tomasini M (1997) PBT a very special polyester. Chem Fibers Int 47(1):30–31

    Google Scholar 

  82. Varghese N, Thilagavathi (2015) Development of woven stretch fabrics and analysis on handle stretch and pressure comfort. J Text Inst 106(3):242–252. https://doi.org/10.1080/00405000.2014.914652

  83. Ward I, Cansfield D, Carr P (1993) In polyester 50 years of achievement: tomorrow’s ideas and profits. J Text Inst 66:1209

    Google Scholar 

  84. Wenjing L, Jin L, Mei W (2010) Crimp and tensile properties of PTT/PET self-crimping staple fiber. Synth Fiber China 1:27–31

    Google Scholar 

  85. Won SL, Hyun SL, Byung CJ, Sung SH, Kang K, Sam SK, Joon HK, Joon SL, Tae WS, Won SY (2001) Effect of zone drawing on the structure and properties of melt-spun poly(trimethylene terephthalate) fiber. J Appl Polym Sci 81:3471–3480

    Google Scholar 

  86. Yildirim FF, Avinç O, Yavaş A (2012) Poly(trimethylene Terephthalate) fibres part 1: production, properties, end-use applications, environmental impact. J Text Eng 19(87)

    Google Scholar 

  87. Yildirim FF, Yavaş A, Avinç O (2012) Overview of Poly(buthylene terephtalate) fibres. J Text Eng 19(87.

    Google Scholar 

  88. Zhu Y, Hu J, Yeung LY, Liu Y, Ji F, Yeung K (2006) Development of shape memory polyurethane fiber with complete shape recoverability. Smart Mater Struct 15(5):1385–1394

    Article  CAS  Google Scholar 

  89. Zuhli Y, Fumei W (2016) Dyeing and finishing performance of different PTT/PET bi-component filament fabrics. Indian J Fibers Text Res 41:411–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramzi Khiari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Souissi, M., Khiari, R., Meksi, N. (2023). Comparative Study of Physical, Chemical, and Dyeing Performances of PET, PTT, and PET/PTT Bicomponent Filaments. In: Ajitha, A.R., Thomas, S. (eds) Poly Trimethylene Terephthalate. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7303-1_14

Download citation

Publish with us

Policies and ethics