Skip to main content

Convective Instability in a Composite Nanofluid Layer Under Local Thermal Non-equilibrium

  • Conference paper
  • First Online:
Frontiers in Industrial and Applied Mathematics (FIAM 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 410))

Included in the following conference series:

  • 240 Accesses

Abstract

Linear, as well as weakly non-linear, analyses have been done to understand the onset of convection and heat and mass transport in a composite nanofluid horizontal layer heated from below under LTNE (local thermal non-equilibrium) effect. Two different types of nanoparticles are assumed to be suspended in the base fluid. Both the nanoparticles and the base fluid are taken to be at different temperature, and therefore, three temperature model is used for LTNE. Thermal Rayleigh number is evaluated analytically using Galerkin’s approach while non-linear analysis is done numerically. The effect of both top-heavy and bottom-heavy configurations of nanoparticles over convective instability is examined. It is found that the system is more stable in case of bottom-heavy configuration when compared to that of top-heavy case. Moreover, the effect of LTNE depends upon the concentration of nanoparticles significantly. A comparison between streamlines, isotherms and isohalines for both LTE (local thermal equilibrium) and LTNE cases is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, S., Bhadauria, B.S., Siddheshwar, P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. STRPM 2(1) (2011)

    Google Scholar 

  2. Agarwal, S., Bhadauria, B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal non-equilibrium model. Transp. Porous Med. 90, 627–654 (2011)

    Article  Google Scholar 

  3. Agarwal, S., Sacheti, N.C., Chandran, P., Bhadauria, B.S., Singh, A.K.: Non-linear convective transport in a binary nanofluid saturated porous layer. Transp. Porous Med. 93, 29–49 (2012)

    Article  Google Scholar 

  4. Agarwal, S., Bhadauria, B.S.: Convective heat transport by longitudinal rolls in dilute nanoliquids. J. Nanofluids 3(4) (2014)

    Google Scholar 

  5. Agarwal, S., Rana, P., Bhadauria, B.S.: Rayleigh-BĂ©nard convection in a nanofluid layer using a thermal non-equilibrium model. JHT 136, 122501 (2014)

    Google Scholar 

  6. Agarwal, S., Bhadauria, B.S.: Thermal instability of a nanofluid layer under local thermal non-equilibrium. Nano Convergence (2015). https://doi.org/10.1186/s40580-014-0037-z

  7. Akilu, S., Sharma, K.V., Baheta, A.V., Mamat, R.: A review of thermophysical properties of water based composite nanofluids. Renew. Sustain. Energy Rev. 66, 654–678 (2016)

    Article  Google Scholar 

  8. Baytas, A.C., Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002)

    Article  Google Scholar 

  9. Baytas, A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat generating solid phase non-Darcy porous medium. Int. J. Energy Res. 27, 975–988 (2003)

    Article  Google Scholar 

  10. Bhadauria, B.S., Srivastava, A.: Combined effect of internal heating and through-flow in a nanofluid saturated porous medium under local thermal nonequilibrium. J. Porous Media 25(2), 75–95 (2022)

    Article  Google Scholar 

  11. Gupta, U., Sharma, J., Sharma, V.: Instability of binary nanofluids with magnetic field. Appl. Math. Mech. 36(6), 693–706 (2015)

    Article  Google Scholar 

  12. Gupta, U., Sharma, J., Devi, M.: Double-diffusive instability of Casson nanofluids with numerical investigations for blood-based fluid. Eur. Phys. J. Spec. Top. 230, 1435–1445 (2021)

    Article  Google Scholar 

  13. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)

    Article  Google Scholar 

  14. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transfer 128, 240–250 (2006)

    Article  Google Scholar 

  15. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Signier, D.A., Wang, H.P. (eds.) Development and Applications of Non-Newtonian Flows, ASME FED, vol. 231/MD vol. 66, pp. 99–105 (1995)

    Google Scholar 

  16. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  17. Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  18. Hanemann, T., Szabo, D.V.: Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3, 3468–517 (2010)

    Article  Google Scholar 

  19. Kanchana, C., Siddheshwar, P.G., Zhao, Y.: Regulation of heat transfer in Rayleigh-Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations. J. Therm. Anal. Calorim. 142, 1579–1600 (2020)

    Article  Google Scholar 

  20. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  21. Kiran, P., Bhadauria, B.S., Kumar, V.: Thermal convection in a nanofluid saturated porous medium with internal heating and gravity modulation. J. Nanofluids 5, 1–12 (2016)

    Article  Google Scholar 

  22. Kumar, V., Awasthi, M.K.: Thermal instability in a horizontal composite nano-liquid layer. SN Appl. Sci. 2, 380 (2020)

    Article  Google Scholar 

  23. Kumar, R., Sharma, J., Sood, J.: Rayleigh-Bénard cell formation of green synthesized nano-particles of silver and selenium. Mater. Today: Proc. 28, 1781–1787 (2020)

    Google Scholar 

  24. Kuznetsov, A.V.: Thermal non-equilibrium forced convection in porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomenon in Porous Media, pp. 103–130. Pergamon, Oxford (1998)

    Google Scholar 

  25. Lagziri, H., Bezzazi, M.: Robin boundary effects in the darcy-rayleigh problem with local thermal non-equilibrium model. Transport in Porous Media (2019). https://doi.org/10.1007/s11242-019-01301-2

  26. Malashetty, M.S., Shivakumara, I.S., Sridhar, K.: The onset of Lapwood-Brinkman convection using a thermal nonequilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)

    Article  MATH  Google Scholar 

  27. Malashetty, M.S., Shivakumara, I.S., Sridhar, K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Med. 60, 199–215 (2005)

    Article  Google Scholar 

  28. Malashetty, M.S., Swamy, M.S., Heera, R.: Double diffusive convection in a porous layer using a thermal non-equilibrium model. Int. J. Therm. Sci. 47, 1131–1147 (2008)

    Article  MATH  Google Scholar 

  29. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by nonofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  MATH  Google Scholar 

  30. Kuznetsov, A.V., Nield, D.A.: Thermal instability in a porous medium layer saturated by nonofluid: Brinkman Model. Transp. Porous Media 81(3), 409–422 (2010)

    Article  Google Scholar 

  31. Nield, D.A., Kuznetsov, A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132/052405-1 (2010)

    Google Scholar 

  32. Postelnicu, A., Rees, D.A.S.: The onset of Darcy-Brinkman convection in a porous layer using a thermal nonequlibrium model-part I: stress-free boundaries. Int. J. Energy Res. 27, 961–973 (2003)

    Article  Google Scholar 

  33. Rees, D.A.S., Banu, N.: Onset of Darcy - Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  MATH  Google Scholar 

  34. Rees, D.A.S., Pop, I.: Local thermal non-equilibrium in porous medium convection. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, vol. III, pp. 147–173. Elsevier, Oxford (2005)

    Google Scholar 

  35. Saeid, N.H.: Analysis of mixed convection in a vertical porous layer using non-equilibrium model. Int. J. Heat Mass Transf. 47, 5619–5627 (2004)

    Article  MATH  Google Scholar 

  36. Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nano fluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–77 (2015)

    Google Scholar 

  37. Siddheshwar, P.G., Siddabasappa, C.: Linear and wealy nonlinear stability analyses of two-dimensional, steady Brinkman-BĂ©nard convection using local thermal non-equilibrium model. Transp. Porous Med. (2017). https://doi.org/10.1007/s11242-017-0943-8

  38. Siddheshwar, P.G., Lakshmi, K.M.: Darcy-BĂ©nard convection of Newtonian liquids and Newtonian nanoliquids in cylindrical enclosures and cylindrical annuli. Phys. Fluids 31, 084102 (2019). https://doi.org/10.1063/1.5109183

  39. Sharma, J., Gupta, U.: Double-diffusive nanofluid convection in porous medium with rotation: Darcy-Brinkman model. Proc. Eng. 127, 783–790 (2015)

    Article  Google Scholar 

  40. Sharma, J., Gupta, U., Wanchoo, R.K.: Magneto binary nanofluid convection in porous medium. Int. J. Chem. Eng. 2016, Article ID 9424036 (2016). https://doi.org/10.1155/2016/9424036

  41. Sharma, J., Gupta, U., Wanchoo, R.K.: Numerical study on binary nanofluid convection in a rotating porous layer. Differ. Equ. Dyn. Syst. 25(2), 239–249 (2017)

    Article  Google Scholar 

  42. Sharma, J., Gupta, U.: Nanofluid convection under Hall currents and LTNE effects. Mater. Today: Proc. 26(3), 3369–3377 (2020)

    Google Scholar 

  43. Tzou, D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130(7), 072401 (2008). https://doi.org/10.1115/1.2908427

  44. Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51(11–12), 2967–2979 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.014

    Article  MATH  Google Scholar 

  45. Zhang, Q., Xu, Y., Wang, X., Yao, W.-T.: Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 7, 10559–83 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, A., Bhadauria, B.S. (2023). Convective Instability in a Composite Nanofluid Layer Under Local Thermal Non-equilibrium. In: Sharma, R.K., Pareschi, L., Atangana, A., Sahoo, B., Kukreja, V.K. (eds) Frontiers in Industrial and Applied Mathematics. FIAM 2021. Springer Proceedings in Mathematics & Statistics, vol 410. Springer, Singapore. https://doi.org/10.1007/978-981-19-7272-0_9

Download citation

Publish with us

Policies and ethics