Skip to main content

Recent Development in Detection Systems for Human Viral Pathogens from Clinical Samples with Special Reference to Biosensors

  • Chapter
  • First Online:
Next-Generation Nanobiosensor Devices for Point-Of-Care Diagnostics

Abstract

Over the last few decades, the emergence and re-emergence of various pathogenic viruses have significantly impacted human health. The continuous rise in cases with increasing mortality rates has driven the chase for effective treatment options and early diagnosis to combat this global health issue. Currently, used laboratory techniques for virus detection require complex equipment, trained personnel, and, most importantly, are time-consuming. In times of outbreaks and epidemics like COVID-19 and Ebola, easy-to-use and point-of-care tests, especially for developing and underdeveloped countries, are indispensable.

This chapter explicitly discusses the availability of the detection methods for various human viral pathogens with their shortcomings and recent advancements in biosensors. With the ongoing improvement in biosensors, these hold important avenues for rapid, sensitive, and scalable devices for viral diagnostic purposes. The effectiveness of previously known and current approaches/devices/methods that utilize different principles for detection has also been reviewed here, with the listing of all the available tests for various human pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wille, M., Geoghegan, J. L., & Holmes, E. C. (2021). How accurately can we assess zoonotic risk? PLoS Biology, 19(4), e3001135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woolhouse, M., Scott, F., Hudson, Z., Howey, R., & Chase-Topping, M. (2012). Human viruses: Discovery and emergence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1604), 2864–2871.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carroll, D., Daszak, P., Wolfe, N. D., Gao, G. F., Morel, C. M., Morzaria, S., et al. (2018). The global virome project. Science, 359(6378), 872–874.

    Article  CAS  PubMed  Google Scholar 

  4. Geoghegan, J. L., & Holmes, E. C. (2017). Predicting virus emergence amid evolutionary noise. Open Biology, 7(10).

    Google Scholar 

  5. Binder, S., Levitt, A. M., Sacks, J. J., & Hughes, J. M. (1999). Emerging infectious diseases: Public health issues for the 21st century. Science, 284(5418), 1311–1313.

    Article  CAS  PubMed  Google Scholar 

  6. Simon, V., Ho, D. D., & Abdool, K. Q. (2006). HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, 368(9534), 489–504.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peteranderl, C., Herold, S., & Schmoldt, C. (2016). Human influenza virus infections. Seminars in Respiratory and Critical Care Medicine, 37(4), 487–500.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rabaan, A. A., Al-Ahmed, S. H., Haque, S., Sah, R., Tiwari, R., Malik, Y. S., et al. (2020). SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Le Infezioni in Medicina, 28(2), 174–184.

    CAS  PubMed  Google Scholar 

  9. Nicastri, E., Kobinger, G., Vairo, F., Montaldo, C., Mboera, L. E. G., Ansunama, R., et al. (2019). Ebola virus disease: Epidemiology, clinical features, management, and prevention. Infectious Disease Clinics of North America, 33(4), 953–976.

    Article  PubMed  Google Scholar 

  10. Banerjee, G., Shokeen, K., Chakraborty, N., Agarwal, S., Mitra, A., Kumar, S., et al. (2021). Modulation of immune response in Ebola virus disease. Current Opinion in Pharmacology, 60, 158–167.

    Article  CAS  PubMed  Google Scholar 

  11. Song, B. H., Yun, S. I., Woolley, M., & Lee, Y. M. (2017). Zika virus: History, epidemiology, transmission, and clinical presentation. Journal of Neuroimmunology, 308, 50–64.

    Article  CAS  PubMed  Google Scholar 

  12. Holmes, E. C., Goldstein, S. A., Rasmussen, A. L., Robertson, D. L., Crits-Christoph, A., Wertheim, J. O., et al. (2021). The origins of SARS-CoV-2: A critical review. Cell, 184(19), 4848–4856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., et al. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., et al. (2016). Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 165(5), 1255–1266.

    Article  CAS  PubMed  Google Scholar 

  15. Tang, Y. W., Procop, G. W., & Persing, D. H. (1997). Molecular diagnostics of infectious diseases. Clinical Chemistry, 43(11), 2021–2038.

    Article  CAS  PubMed  Google Scholar 

  16. Hsiung, G. D. (1984). Diagnostic virology: From animals to automation. The Yale Journal of Biology and Medicine, 57(5), 727–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hematian, A., Sadeghifard, N., Mohebi, R., Taherikalani, M., Nasrolahi, A., Amraei, M., et al. (2016). Traditional and modern cell culture in virus diagnosis. Osong Public Health and Research Perspectives, 7(2), 77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leland, D. S., & Ginocchio, C. C. (2007). Role of cell culture for virus detection in the age of technology. Clinical Microbiology Reviews, 20(1), 49–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fredricks, D. N., & Relman, D. A. (1999). Application of polymerase chain reaction to the diagnosis of infectious diseases. Clinical Infectious Diseases, 29(3), 475–486. quiz 87-8.

    Article  CAS  PubMed  Google Scholar 

  20. Smolinski, M. S., Hamburg, M. A., & Lederberg, J. (Eds.). (2003). Microbial threats to health: emergence, detection, and response. National Academies Press.

    Google Scholar 

  21. Mollentze, N., Babayan, S. A., & Streicker, D. G. (2021). Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biology, 19(9).

    Google Scholar 

  22. Mullis, K. B. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262(4), 56–61. 4–5.

    Article  CAS  PubMed  Google Scholar 

  23. Barreda-Garcia, S., Miranda-Castro, R., de-Los-Santos-Alvarez, N., Miranda-Ordieres, A. J., & Lobo-Castanon, M. J. (2018). Helicase-dependent isothermal amplification: A novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Analytical and Bioanalytical Chemistry, 410(3), 679–693.

    Article  CAS  PubMed  Google Scholar 

  24. Bharucha, T., Sengvilaipaseuth, O., Vongsouvath, M., Vongsouvath, M., Davong, V., Panyanouvong, P., et al. (2018). Development of an improved RT-qPCR assay for detection of Japanese encephalitis virus (JEV) RNA including a systematic review and comprehensive comparison with published methods. PLoS One, 13(3), e0194412.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kojabad, A. A., Farzanehpour, M., Galeh, H. E. G., Dorostkar, R., Jafarpour, A., Bolandian, M., et al. (2021). Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology, 93(7), 4182–4197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ben Shabat, M., Meir, R., Haddas, R., Lapin, E., Shkoda, I., Raibstein, I., et al. (2010). Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. Journal of Virological Methods, 168(1–2), 72–77.

    Article  CAS  PubMed  Google Scholar 

  27. Sue, M. J., Yeap, S. K., Omar, A. R., & Tan, S. W. (2014). Application of PCR-ELISA in molecular diagnosis. BioMed Research International, 2014, 653014.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cave, H., Acquaviva, C., Bieche, I., Brault, D., de Fraipont, F., & Fina, F., et al. (2003). [RT-PCR in clinical diagnosis]. Annales de Biologie Clinique (Paris), 61(6), 635–644.

    Google Scholar 

  29. Gu, W., Miller, S., & Chiu, C. Y. (2019). Clinical metagenomic next-generation sequencing for pathogen detection. Annual Review of Pathology, 14, 319–338.

    Article  CAS  PubMed  Google Scholar 

  30. Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25(2), 169–193.

    Article  CAS  PubMed  Google Scholar 

  31. Batten, C. A., Banyard, A. C., King, D. P., Henstock, M. R., Edwards, L., Sanders, A., et al. (2011). A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus. Journal of Virological Methods, 171(2), 401–404.

    Article  CAS  PubMed  Google Scholar 

  32. van de Pol, A. C., Wolfs, T. F., van Loon, A. M., Tacke, C. E., Viveen, M. C., Jansen, N. J., et al. (2010). Molecular quantification of respiratory syncytial virus in respiratory samples: Reliable detection during the initial phase of infection. Journal of Clinical Microbiology, 48(10), 3569–3574.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Templeton, K. E., Scheltinga, S. A., Beersma, M. F., Kroes, A. C., & Claas, E. C. (2004). Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. Journal of Clinical Microbiology, 42(4), 1564–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muller, D. A., Depelsenaire, A. C., & Young, P. R. (2017). Clinical and laboratory diagnosis of dengue virus infection. The Journal of Infectious Diseases, 215(suppl_2), S89–S95.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts, A., & Gandhi, S. (2020). Japanese encephalitis virus: A review on emerging diagnostic techniques. Frontiers in Bioscience (Landmark Ed)., 25(10), 1875–1893.

    Article  CAS  Google Scholar 

  36. Yuce, M., Filiztekin, E., & Ozkaya, K. G. (2021). COVID-19 diagnosis -a review of current methods. Biosensors & Bioelectronics, 172, 112752.

    Article  CAS  Google Scholar 

  37. Wang, T., & Brown, M. J. (1999). mRNA quantification by real time TaqMan polymerase chain reaction: Validation and comparison with RNase protection. Analytical Biochemistry, 269(1), 198–201.

    Article  CAS  PubMed  Google Scholar 

  38. Borson, N. D., Salo, W. L., & Drewes, L. R. (1992). A lock-docking oligo(dT) primer for 5′ and 3’ RACE PCR. PCR Methods and Applications, 2(2), 144–148.

    Article  CAS  PubMed  Google Scholar 

  39. Tahamtan, A., & Ardebili, A. (2020). Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Review of Molecular Diagnostics, 20(5), 453–454.

    Article  CAS  PubMed  Google Scholar 

  40. Londone-Bailon, P., & Sanchez-Robinet, C. (2018). Efficiency evaluation of the process control virus “Mengovirus” in real time RT-PCR viral detection in the bivalve Mollusc donax sp. Journal of Virological Methods, 262, 20–25.

    Article  CAS  PubMed  Google Scholar 

  41. Golender, N., Bumbarov, V. Y., Erster, O., Beer, M., Khinich, Y., & Wernike, K. (2018). Development and validation of a universal S-segment-based real-time RT-PCR assay for the detection of Simbu serogroup viruses. Journal of Virological Methods, 261, 80–85.

    Article  CAS  PubMed  Google Scholar 

  42. Craw, P., & Balachandran, W. (2012). Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab on a Chip, 12(14), 2469–2486.

    Article  CAS  PubMed  Google Scholar 

  43. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), E63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sahoo, P. R., Sethy, K., Mohapatra, S., & Panda, D. (2016). Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases. Veterinay World., 9(5), 465–469.

    Article  CAS  Google Scholar 

  45. Butt, A. M., Siddique, S., An, X., & Tong, Y. J. M. (2020). Development of a dual-gene loop-mediated isothermal amplification (LAMP) detection assay for SARS-CoV-2: A preliminary study.

    Google Scholar 

  46. Selvam, K., Najib, M. A., Khalid, M. F., Mohamad, S., Palaz, F., Ozsoz, M., et al. (2021). RT-LAMP CRISPR-Cas12/13-based SARS-CoV-2 detection methods. Diagnostics (Basel)., 11(9).

    Google Scholar 

  47. Anderson, E. M., & Maldarelli, F. (2018). Quantification of HIV DNA using droplet digital PCR techniques. Current Protocols in Microbiology, 51(1), e62.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vasudevan, H. N., Xu, P., Servellita, V., Miller, S., Liu, L., Gopez, A., et al. (2021). Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification. Scientific Reports, 11(1), 1–9.

    Article  Google Scholar 

  49. Vellucci, A., Leibovitch, E. C., & Jacobson, S. (2018). Using droplet digital PCR to detect coinfection of human herpesviruses 6A and 6B (HHV-6A and HHV-6B) in clinical samples. Digital PCR (pp. 99–109). Springer.

    Google Scholar 

  50. Mardis, E. R. (2011). A decade’s perspective on DNA sequencing technology. Nature, 470(7333), 198–203.

    Article  CAS  PubMed  Google Scholar 

  51. Xue, Y., Ankala, A., Wilcox, W. R., & Hegde, M. R. (2015). Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: Single-gene, gene panel, or exome/genome sequencing. Genetics in Medicine, 17(6), 444–451.

    Article  CAS  PubMed  Google Scholar 

  52. Pettersson, E., Lundeberg, J., & Ahmadian, A. (2009). Generations of sequencing technologies. Genomics, 93(2), 105–111.

    Article  CAS  PubMed  Google Scholar 

  53. Meera Krishna, B., Khan, M. A., & Khan, S. T. (2019). Next-generation sequencing (NGS) platforms: An exciting era of genome sequence analysis. In V. Tripathi, P. Kumar, P. Tripathi, A. Kishore, & M. Kamle (Eds.), Microbial genomics in sustainable agroecosystems (Vol. 2, pp. 89–109). Springer.

    Chapter  Google Scholar 

  54. Crits-Christoph, A., Kantor, R. S., Olm, M. R., Whitney, O. N., Al-Shayeb, B., Lou, Y. C., et al. (2021). Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. MBio, 12(1).

    Google Scholar 

  55. Kannan, S. R., Spratt, A. N., Cohen, A. R., Naqvi, S. H., Chand, H. S., Quinn, T. P., et al. (2021). Evolutionary analysis of the Delta and Delta plus variants of the SARS-CoV-2 viruses. Journal of Autoimmunity, 124, 102715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garneau, J. E., Dupuis, M. E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71.

    Article  CAS  PubMed  Google Scholar 

  57. Yin, L., Man, S., Ye, S., Liu, G., & Ma, L. J. B. (2021). CRISPR-Cas based virus detection: recent advances and perspectives. Biosensors and Bioelectronics, 193, 113541.

    Article  CAS  PubMed  Google Scholar 

  58. Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., et al. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356(6336), 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rowe, T., Abernathy, R. A., Hu-Primmer, J., Thompson, W. W., Lu, X., Lim, W., et al. (1999). Detection of antibody to avian influenza a (H5N1) virus in human serum by using a combination of serologic assays. Journal of Clinical Microbiology, 37(4), 937–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Atmar, R. L. (2014). Immunological detection and characterization. Viral Infections of Humans (pp. 47–62). Springer.

    Book  Google Scholar 

  61. Killian, M. L. (2014). Hemagglutination assay for influenza virus. Methods in Molecular Biology, 1161, 3–9.

    Article  PubMed  Google Scholar 

  62. Spackman, E., & Sitaras, I. (2020). Hemagglutination inhibition assay. Animal influenza virus (pp. 11–28). Springer.

    Google Scholar 

  63. Olaleye, O. D., Omilabu, S. A., Ilomechina, E. N., & Fagbami, A. H. (1990). A survey for haemagglutination-inhibiting antibody to West Nile virus in human and animal sera in Nigeria. Comparative Immunology, Microbiology and Infectious Diseases, 13(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  64. Julkunen, I. (1984). Serological diagnosis of parainfluenza virus infections by enzyme immunoassay with special emphasis on purity of viral antigens. Journal of Medical Virology, 14(2), 177–187.

    Article  CAS  PubMed  Google Scholar 

  65. Kobayashi, Y., Ichiki, T., Kusaba, T., Tachibana, N., & Nagai, K. (1971) [Hemagglutination inhibition antibody against Japanese encephalitis virus and the effects of vaccination on inhabitants of Fukuoka City and its environs]. Kansenshōgaku Zasshi, 45(11), 490–493.

    Google Scholar 

  66. Gauger, P. C., & Vincent, A. L. (2020). Serum virus neutralization assay for detection and quantitation of serum neutralizing antibodies to influenza a virus in swine. Methods in Molecular Biology, 2123, 321–333.

    Article  CAS  PubMed  Google Scholar 

  67. Thomas, S. J., Nisalak, A., Anderson, K. B., Libraty, D. H., Kalayanarooj, S., Vaughn, D. W., et al. (2009). Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: How alterations in assay conditions impact performance. The American Journal of Tropical Medicine and Hygiene, 81(5), 825–833.

    Article  PubMed  Google Scholar 

  68. Nie, J., Li, Q., Wu, J., Zhao, C., Hao, H., Liu, H., et al. (2020). Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nature Protocols, 15(11), 3699–3715.

    Article  CAS  PubMed  Google Scholar 

  69. O’Farrell, B. (2009). Evolution in lateral flow–based immunoassay systems (pp. 1–33). Springer.

    Book  Google Scholar 

  70. Peto, T., Affron, D., Afrough, B., Agasu, A., Ainsworth, M., Allanson, A., et al. (2021). COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. eClinicalMedicine., 36, 100924.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bosch, I., de Puig, H., Hiley, M., Carre-Camps, M., Perdomo-Celis, F., Narvaez, C. F., et al. (2017). Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Science Translational Medicine, 9(409).

    Google Scholar 

  72. Le, T. T., Chang, P., Benton, D. J., McCauley, J. W., Iqbal, M., & Cass, A. E. G. (2017). Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Analytical Chemistry, 89(12), 6781–6786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goode, J., Rushworth, J., & Millner, P. J. L. (2015). Biosensor regeneration: a review of common techniques and outcomes. Langmuir, 31(23), 6267–6276.

    Article  CAS  PubMed  Google Scholar 

  74. Castillo-Henríquez, L., Brenes-Acuña, M., Castro-Rojas, A., Cordero-Salmerón, R., Lopretti-Correa, M., & Vega-Baudrit, J. R. J. S. (2020). Biosensors for the detection of bacterial and viral clinical pathogens. Sensors (Basel), 20(23), 6926.

    Article  PubMed  Google Scholar 

  75. Koyun, A., Ahlatcolu, E., & Koca, Y. (2012). Milestones. In S. Kara (Ed.), Biosensors and their principles (pp. 117–142). InTech Open.

    Google Scholar 

  76. Saylan, Y., Yilmaz, F., Ozgur, E., Derazshamshir, A., Yavuz, H., & Denizli, A. (2017). Molecular imprinting of macromolecules for sensor applications. Sensors (Basel)., 17(4).

    Google Scholar 

  77. Cho, K. H., Shin, D. H., Oh, J., An, J. H., Lee, J. S., Jang, J., et al. (2018). Multidimensional conductive nanofilm-based flexible aptasensor for ultrasensitive and selective HBsAg detection. ACS Applied Materials & Interfaces., 10(34), 28412–28419.

    Article  CAS  Google Scholar 

  78. La Spada, L., & Vegni, L. J. M. (2018). Electromagnetic nanoparticles for sensing and medical diagnostic applications. Materials., 11(4), 603.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pang, Y., Jian, J., Tu, T., Yang, Z., Ling, J., Li, Y., et al. (2018). Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors and Bioelectronics, 116, 123–129.

    Article  CAS  PubMed  Google Scholar 

  80. Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. J. P. (1999). Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 71(12), 2333–2348.

    CAS  Google Scholar 

  81. Saylan, Y., Erdem, O., Unal, S., & Denizli, A. (2019). An alternative medical diagnosis method: Biosensors for virus detection. Biosensors (Basel)., 9(2).

    Google Scholar 

  82. Sharma, A., Mishra, R. K., Goud, K. Y., Mohamed, M. A., Kummari, S., Tiwari, S., et al. (2021). Optical biosensors for diagnostics of infectious viral disease: A recent update. Diagnostics (Basel)., 11(11).

    Google Scholar 

  83. Mustapha Kamil, Y., Al-Rekabi, S. H., Yaacob, M. H., Syahir, A., Chee, H. Y., Mahdi, M. A., et al. (2019). Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor. Scientific Reports, 9(1), 13483.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Omar, N. A. S., Fen, Y. W., Abdullah, J., Chik, C. E. N. C. E., & Mahdi, M. A. (2018). Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sensing and Bio-Sensing Research, 20, 16–21.

    Article  Google Scholar 

  85. Chung, J., Kim, S., Bernhardt, R., Pyun, J. C. J. S., & Chemical, A. B. (2005). Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sensors and Actuators B: Chemical, 111, 416–422.

    Article  Google Scholar 

  86. Zengin, A., Tamer, U., & Caykara, T. J. (2017). SERS detection of hepatitis B virus DNA in a temperature-responsive sandwich-hybridization assay. Journal of Raman Spectroscopy, 48(5), 668–672.

    Article  CAS  Google Scholar 

  87. Shafiee, H., Lidstone, E. A., Jahangir, M., Inci, F., Hanhauser, E., Henrich, T. J., et al. (2014). Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Scientific Reports, 4(1), 1–7.

    Google Scholar 

  88. Inci, F., Tokel, O., Wang, S., Gurkan, U. A., Tasoglu, S., Kuritzkes, D. R., et al. (2013). Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano, 7(6), 4733–4745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Inci, F., Filippini, C., Baday, M., Ozen, M. O., Calamak, S., Durmus, N. G., et al. (2015). Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 112(32), E4354–E4363.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hadi, M. U., & Khurshid, M. J. S. (2022). SARS-CoV-2 detection using optical fiber based sensor method. Sensors (Basel), 22(3), 751.

    Article  CAS  PubMed  Google Scholar 

  91. Moznuzzaman, M., Khan, I., & Islam, M. R. (2021). Nano-layered surface plasmon resonance-based highly sensitive biosensor for virus detection: A theoretical approach to detect SARS-CoV-2. AIP Advances., 11(6), 065023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: Recommended definitions and classification. Biosensors & Bioelectronics, 16(1–2), 121–131.

    CAS  Google Scholar 

  93. Anusha, J., Kim, B. C., Yu, K.-H., & Raj, C. J. (2019). Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosensors and Bioelectronics, 142, 111511.

    Article  CAS  PubMed  Google Scholar 

  94. Palomar, Q., Xu, X., Gondran, C., Holzinger, M., Cosnier, S., & Zhang, Z. J. M. A. (2020). Voltammetric sensing of recombinant viral dengue virus 2 NS1 based on Au nanoparticle–decorated multiwalled carbon nanotube composites. Microchimica Acta, 187(6), 1–10.

    Article  Google Scholar 

  95. Kim, J. H., Cho, C. H., Ryu, M. Y., Kim, J.-G., Lee, S.-J., Park, T. J., et al. (2019). Development of peptide biosensor for the detection of dengue fever biomarker, nonstructural 1. PLoS One., 14(9), e0222144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Antipchik, M., Korzhikova-Vlakh, E., Polyakov, D., Tarasenko, I., Reut, J., Öpik, A., et al. (2021). An electrochemical biosensor for direct detection of hepatitis C virus. Analytical Biochemistry, 624, 114196.

    Article  CAS  PubMed  Google Scholar 

  97. Chowdhury, A. D., Takemura, K., Li, T.-C., Suzuki, T., & Park, E. Y. (2019). Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nature Communications, 10(1), 1–12.

    Article  Google Scholar 

  98. Gong, Q., Han, H., Yang, H., Zhang, M., Sun, X., Liang, Y., et al. (2019). Sensitive electrochemical DNA sensor for the detection of HIV based on a polyaniline/graphene nanocomposite. Journal of Materiomics, 5(2), 313–319.

    Article  Google Scholar 

  99. Zhang, D., Peng, Y., Qi, H., Gao, Q., & Zhang, C. (2010). Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosensors & Bioelectronics, 25(5), 1088–1094.

    Article  CAS  Google Scholar 

  100. Chaibun, T., Puenpa, J., Ngamdee, T., Boonapatcharoen, N., Athamanolap, P., O’Mullane, A. P., et al. (2021). Rapid electrochemical detection of coronavirus SARS-CoV-2. Nature Communications, 12(1), 1–10.

    Article  Google Scholar 

  101. Seo, G., Lee, G., Kim, M. J., Baek, S. H., Choi, M., Ku, K. B., et al. (2020). Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 14(4), 5135–5142.

    Article  CAS  PubMed  Google Scholar 

  102. Berlincourt, D. (1971). Piezoelectric crystals and ceramics. Ultrasonic transducer materials (pp. 63–124). Springer.

    Book  Google Scholar 

  103. Chen, Y., Qian, C., Liu, C., Shen, H., Wang, Z., Ping, J., et al. (2020). Nucleic acid amplification free biosensors for pathogen detection. Biosensors & Bioelectronics, 153, 112049.

    Article  CAS  Google Scholar 

  104. Wu, T. Z., Su, C. C., Chen, L. K., Yang, H. H., Tai, D. F., & Peng, K. C. (2005). Piezoelectric immunochip for the detection of dengue fever in viremia phase. Biosensors & Bioelectronics, 21(5), 689–695.

    Article  CAS  Google Scholar 

  105. Pirich, C. L., de Freitas, R. A., Torresi, R. M., Picheth, G. F., & Sierakowski, M. R. J. B. (2017). Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosensors and Bioelectronics, 92, 47–53.

    Article  CAS  PubMed  Google Scholar 

  106. Zhou, X., Liu, L., Hu, M., Wang, L., & Hu, J. (2002). Detection of hepatitis B virus by piezoelectric biosensor. Journal of Pharmaceutical and Biomedical Analysis, 27(1–2), 341–345.

    Article  CAS  PubMed  Google Scholar 

  107. Skladal, P., dos Santos, R. C., Yamanaka, H., & da Costa, P. I. (2004). Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. Journal of Virological Methods, 117(2), 145–151.

    Article  CAS  PubMed  Google Scholar 

  108. Bisoffi, M., Severns, V., Branch, D. W., Edwards, T. L., & Larson, R. S. (2013). Rapid detection of human immunodeficiency virus types 1 and 2 by use of an improved piezoelectric biosensor. Journal of Clinical Microbiology, 51(6), 1685–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rozmyslowicz, T., deSa, J., Lec, R., & Gaulton, G. N. (2015). A novel point-of-care BioNanoSensor for rapid HIV detection and treatment monitoring. J AIDS. Clinical Research, 6(5).

    Google Scholar 

  110. Kabir, H., Merati, M., & Abdekhodaie, M. J. (2021). Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19. Journal of Medical Engineering & Technology, 45(6), 423–433.

    Article  Google Scholar 

  111. Wang, T., Zhou, Y., Lei, C., Luo, J., Xie, S., Pu, H. J. B., et al. (2017). Magnetic impedance biosensor: A review. Biosensors & Bioelectronics, 90, 418–435.

    Article  CAS  Google Scholar 

  112. Qureshi, T., Faisal, M., Qureshi, S., & Memon, N. (2021). Magnetic biosensors for virus detection. Biosensors for Virus Detection, 7–1.

    Google Scholar 

  113. Antunes, P., Watterson, D., Parmvi, M., Burger, R., Boisen, A., Young, P., et al. (2015). Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Scientific Reports, 5(1), 1–10.

    Article  Google Scholar 

  114. Xi, Z., Huang, R., Li, Z., He, N., Wang, T., Su, E., et al. (2015). Selection of HBsAg-specific DNA aptamers based on Carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Applied Materials & Interfaces, 7(21), 11215–11223.

    Article  CAS  Google Scholar 

  115. Ng, E., Yao, C., Shultz, T. O., Ross-Howe, S., & Wang, S. X. (2019). Magneto-nanosensor smartphone platform for the detection of HIV and leukocytosis at point-of-care. Nanomedicine, 16, 10–19.

    Article  CAS  PubMed  Google Scholar 

  116. Bayin, Q., Huang, L., Ren, C., Fu, Y., Ma, X., & Guo, J. (2021). Anti-SARS-CoV-2 IgG and IgM detection with a GMR based LFIA system. Talanta, 227, 122207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sagdic, K., Erdem, Ö., Derin, E., Shirejini, S. Z., Aslan, Y., Celik, S., et al. (2021). Micromechanical biosensors for virus detection. Biosensors for Virus Detection, 8–1.

    Google Scholar 

  118. Katta, M., Sandanalakshmi, R. J. S., & Research, B.-S. (2021). Simultaneous tropical disease identification with PZT-5H piezoelectric material including molecular mass biosensor microcantilever collection. Sensing and Bio-Sensing Research., 32, 100413.

    Article  Google Scholar 

  119. Timurdogan, E., Alaca, B. E., Kavakli, I. H., & Urey, H. (2011). MEMS biosensor for detection of hepatitis a and C viruses in serum. Biosensors & Bioelectronics, 28(1), 189–194.

    Article  CAS  Google Scholar 

  120. Lim, H. J., Saha, T., Tey, B. T., Tan, W. S., & Ooi, C. W. (2020). Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosensors & Bioelectronics, 168, 112513.

    Article  CAS  Google Scholar 

  121. Ly, T. N., Park, S., Park, S. J. J. S., & Chemical, A. B. (2016). Detection of HIV-1 antigen by quartz crystal microbalance using gold nanoparticles. Sensors and Actuators B: Chemical, 237, 452–458.

    Article  CAS  Google Scholar 

  122. Agarwal, D. K., Nandwana, V., Henrich, S. E., Josyula, V., Thaxton, C. S., Qi, C., et al. (2022). Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosensors & Bioelectronics, 195, 113647.

    Article  CAS  Google Scholar 

  123. Mallet, L., & Gisonni-Lex, L. (2014). Need for new technologies for detection of adventitious agents in vaccines and other biological products. PDA Journal of Pharmaceutical Science and Technology, 68(6), 556–562.

    Article  PubMed  Google Scholar 

  124. Roush, D. J. (2018). Integrated viral clearance strategies-reflecting on the present, projecting to the future. Current Opinion in Biotechnology, 53, 137–143.

    Article  CAS  PubMed  Google Scholar 

  125. Holmes, E. C., Rambaut, A., & Andersen, K. G. (2018). Pandemics: Spend on surveillance, not prediction. Nature, 558(7709), 180–182.

    Article  CAS  PubMed  Google Scholar 

  126. Cai, H., Parks, J. W., Wall, T. A., Stott, M. A., Stambaugh, A., Alfson, K., et al. (2015). Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Scientific Reports, 5, 14494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Song, J., Mauk, M. G., Hackett, B. A., Cherry, S., Bau, H. H., & Liu, C. (2016). Instrument-free point-of-care molecular detection of Zika virus. Anal Chem, 88(14), 7289–7294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bai, H., Wang, R., Hargis, B., Lu, H., & Li, Y. (2012). A SPR aptasensor for detection of avian influenza virus H5N1. Sensors (Basel)., 12(9), 12506–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ashiba, H., Sugiyama, Y., Wang, X., Shirato, H., Higo-Moriguchi, K., Taniguchi, K., et al. (2017). Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosensors and Bioelectronics, 93, 260–266.

    Article  CAS  PubMed  Google Scholar 

  130. Jin, C. E., Lee, T. Y., Koo, B., Sung, H., Kim, S.-H., Shin, Y. J. S., et al. (2018). Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing. Sensors and Actuators B: Chemical, 255, 2399–2406.

    Article  CAS  Google Scholar 

  131. Ilkhani, H., & Farhad, S. (2018). A novel electrochemical DNA biosensor for Ebola virus detection. Analytical Biochemistry, 557, 151–155.

    Article  CAS  PubMed  Google Scholar 

  132. Faria, H. A. M., & Zucolotto, V. (2019). Label-free electrochemical DNA biosensor for zika virus identification. Biosensors & Bioelectronics, 131, 149–155.

    Article  CAS  Google Scholar 

  133. Lee, T., Park, S. Y., Jang, H., Kim, G.-H., Lee, Y., Park, C., et al. (2019). Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. Materials Science and Engineering: C, 99, 511–519.

    Article  CAS  PubMed  Google Scholar 

  134. Hwang, H. J., Ryu, M. Y., Park, C. Y., Ahn, J., Park, H. G., Choi, C., et al. (2017). High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder. Biosensors & Bioelectronics, 87, 164–170.

    Article  CAS  Google Scholar 

  135. Lin, D., Tang, T., Harrison, D. J., Lee, W. E., & Jemere, A. B. (2015). A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus. Biosensors and Bioelectronics, 68, 129–134.

    Article  CAS  PubMed  Google Scholar 

  136. Baca, J. T., Severns, V., Lovato, D., Branch, D. W., & Larson, R. S. (2015). Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors (Basel)., 15(4), 8605–8614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dell’Atti, D., Zavaglia, M., Tombelli, S., Bertacca, G., Cavazzana, A. O., Bevilacqua, G., et al. (2007). Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk human papilloma virus strains. Clinica Chimica Acta, 383(1–2), 140–146.

    Article  Google Scholar 

  138. Jenik, M., Schirhagl, R., Schirk, C., Hayden, O., Lieberzeit, P., Blaas, D., et al. (2009). Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance. Analytical Chemistry, 81(13), 5320–5326.

    Article  CAS  PubMed  Google Scholar 

  139. Carinelli, S., Kuhnemund, M., Nilsson, M., & Pividori, M. I. (2017). Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification. Biosensors & Bioelectronics, 93, 65–71.

    Article  CAS  Google Scholar 

  140. Stern, M., Cohen, M., & Danielli, A. (2019). Configuration and design of electromagnets for rapid and precise manipulation of magnetic beads in biosensing applications. Micromachines (Basel)., 10(11).

    Google Scholar 

  141. Chen, H. W., Fang, Z. S., Chen, Y. T., Chen, Y. I., Yao, B. Y., Cheng, J. Y., et al. (2017). Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Applied Materials & Interfaces, 9(46), 39953–39961.

    Article  CAS  Google Scholar 

  142. Lee, J., Takemura, K., Kato, C. N., Suzuki, T., & Park, E. Y. (2017). Binary nanoparticle graphene hybrid structure-based highly sensitive biosensing platform for norovirus-like particle detection. ACS Applied Materials & Interfaces, 9(32), 27298–27304.

    Article  CAS  Google Scholar 

  143. Chen, Y., Ren, R., Pu, H., Guo, X., Chang, J., Zhou, G., et al. (2017). Field-effect transistor biosensor for rapid detection of Ebola antigen. Scientific Reports, 7(1), 10974.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dolai, S., & Tabib-Azar, M. (2019). 433 MHz Lithium Niobate microbalance aptamer-coated whole Zika virus sensor with 370 Hz/ng sensitivity. EEE Sensors Journal, 20(8), 4269–4274.

    Article  Google Scholar 

  145. Peduru Hewa, T. M., Tannock, G. A., Mainwaring, D. E., Harrison, S., & Fecondo, J. V. (2009). The detection of influenza a and B viruses in clinical specimens using a quartz crystal microbalance. Journal of Virological Methods, 162(1–2), 14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chand, R., & Neethirajan, S. (2017). Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus. Biosensors and Bioelectronics, 98, 47–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shokeen, K., Chowdhury, P., Kumar, S. (2023). Recent Development in Detection Systems for Human Viral Pathogens from Clinical Samples with Special Reference to Biosensors. In: Dutta, G. (eds) Next-Generation Nanobiosensor Devices for Point-Of-Care Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-19-7130-3_1

Download citation

Publish with us

Policies and ethics