Skip to main content

In-Situ Heating TEM

  • Chapter
  • First Online:
In-Situ Transmission Electron Microscopy
  • 1104 Accesses

Abstract

Revealing the response of materials to thermal excitation is crucial since they generally undergo distinct structural transformations when synthesized with different heating processes and should frequently work at varying temperatures. Therefore, in-situ heating TEM has become an indispensable tool for atomic-scale dynamic analysis to link fine structures to properties and performance. In contrast to postmortem characterization of materials before and after heat treatment, in-situ heating TEM can offer unique direct evidence for structural or chemical changes within the samples. This chapter firstly introduces a brief history of in-situ heating TEM. Then, a review of current related technologies is provided, such as operation mode for imaging, different types of heating holders, microheaters related knowledge, and holders with coupled fields besides heating. Moreover, recent studies using in-situ heating TEM are presented in separate categories: materials growth, sublimation, failure analysis, annealing, phase transformation, catalysis, batteries, etc. Finally, we provide perspectives for its future development regarding fast recording, data processing/computing capabilities, coupled external stimuli, and broad materials systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crewe AV (1979) Direct imaging of single atoms and molecules using the STEM. Chem Scr 14:17–20

    CAS  Google Scholar 

  2. Hashimoto H, Takai Y, Yokota Y, Endoh H, Fukada E (1980) Direct observations of the arrangement of atoms around stacking faults and twins in gold crystals and the movement of atoms accompanying their formation and disappearance. Jpn J Appl Phys 19(1):L1–L4. https://doi.org/10.1143/jjap.19.l1

    Article  CAS  Google Scholar 

  3. Sinclair R, Yamashita T, Ponce FA (1981) Atomic motion on the surface of a cadmium telluride single crystal. Nature 290(5805):386–388. https://doi.org/10.1038/290386a0

    Article  CAS  Google Scholar 

  4. Sinclair R, Parker MA (1986) High-resolution transmission electron microscopy of silicon re-growth at controlled elevated temperatures. Nature 322(6079):531–533. https://doi.org/10.1038/322531a0

    Article  CAS  Google Scholar 

  5. Lin F, Markus IM, Nordlund D, Weng T-C, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5(1):3529. https://doi.org/10.1038/ncomms4529

    Article  CAS  Google Scholar 

  6. Gu M, Belharouak I, Genc A, Wang Z, Wang D, Amine K, Gao F, Zhou G, Thevuthasan S, Baer DR, Zhang J-G, Browning ND, Liu J, Wang C (2012) Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett 12(10):5186–5191. https://doi.org/10.1021/nl302249v

    Article  CAS  Google Scholar 

  7. Kim H, Kim MG, Jeong HY, Nam H, Cho J (2015) A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett 15(3):2111–2119. https://doi.org/10.1021/acs.nanolett.5b00045

  8. Contarato D, Denes P, Doering D, Joseph J, Krieger B (2012) High speed, radiation hard cmos pixel sensors for transmission electron microscopy. Phys Procedia 37:1504–1510. https://doi.org/10.1016/j.phpro.2012.04.103

    Article  CAS  Google Scholar 

  9. Veghte DP, China S, Weis J, Lin P, Hinks ML, Kovarik L, Nizkorodov SA, Gilles MK, Laskin A (2018) Heating-induced transformations of atmospheric particles: environmental transmission electron microscopy study. Anal Chem 90(16):9761–9768. https://doi.org/10.1021/acs.analchem.8b01410

    Article  CAS  Google Scholar 

  10. Aradi E, Lewis-Fell J, Harrison RW, Greaves G, Mir AH, Donnelly SE, Hinks JA (2018) Enhanced radiation tolerance of tungsten nanoparticles to He ion irradiation. Nanomaterials 8(12). https://doi.org/10.3390/nano8121052

  11. Ipatova I, Harrison RW, Terentyev D, Donnelly SE, Jimenez-Melero E (2017) Thermal evolution of the proton irradiated structure in tungsten–5 wt% tantalum. J Fusion Energy 36(6):234–239. https://doi.org/10.1007/s10894-017-0145-y

    Article  CAS  Google Scholar 

  12. Sihai L, Xiangfan N, Liucheng Z, Xi Y, Weifeng H, Yinghong L (2017) Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy. Surf Coat Technol 311:337–343. https://doi.org/10.1016/j.surfcoat.2017.01.031

    Article  CAS  Google Scholar 

  13. Liu C, Wu S, Zheng H, Cao F, Sheng H, Zhao D, Wang J (2015) Size-controllable fabrication of Cu nanoparticles on carbon nanotubes by simple heating. Mater Res Bull 61:270–274. https://doi.org/10.1016/j.materresbull.2014.10.019

    Article  CAS  Google Scholar 

  14. Zhang Q, Chang Y, Gu L, Luo Y, Ge B (2017) Study of microstructure of nickel-based superalloys at high temperatures. Scripta Mater 126:55–57. https://doi.org/10.1016/j.scriptamat.2016.08.013

    Article  CAS  Google Scholar 

  15. Divitini G, Cacovich S, Matteocci F, Cinà L, Di Carlo A, Ducati C (2016) In situ observation of heat-induced degradation of perovskite solar cells. Nat Energy 1(2):15012. https://doi.org/10.1038/nenergy.2015.12

    Article  CAS  Google Scholar 

  16. Janish MT, Mook WM, Carter CB (2015) Nucleation of fcc Ta when heating thin films. Scripta Mater 96:21–24. https://doi.org/10.1016/j.scriptamat.2014.10.010

    Article  CAS  Google Scholar 

  17. Hotovy I, Rehacek V, Mika F, Lalinsky T, Hascik S, Vanko G, Drzik M (2008) Gallium arsenide suspended microheater for MEMS sensor arrays. Microsyst Technol 14(4–5):629–635. https://doi.org/10.1007/s00542-007-0470-6

    Article  CAS  Google Scholar 

  18. Franssila S (2010) Introduction to microfabrication, 2 edn. John Wiley & Sons

    Google Scholar 

  19. Spruit RG, Omme JTv, Ghatkesar MK, Garza (2017) A review on development and optimization of microheaters for high-temperature in situ studies. J Microelectromech Syst 26(6):1165–1182. https://doi.org/10.1109/jmems.2017.2757402

  20. Karki K, Huang Y, Hwang S, Gamalski AD, Whittingham MS, Zhou G, Stach EA (2016) Tuning the Activity of Oxygen in LiNi0.8Co0.15Al0.05O2 battery electrodes. ACS Appl Mater Interfaces 8 (41):27762–27771. https://doi.org/10.1021/acsami.6b09585

  21. Pérez Garza HH, Zuo K, Pivak Y, Morsink D, Zakhozheva M, Pen M, van Weperen S, Xu Q MEMS-based system for in-situ biasing and heating solutions inside the TEM. In: European microscopy congress, pp 237–238 (2016). https://doi.org/10.1002/9783527808465.EMC2016.6710

  22. Wang J, Lu J, You X, Ullah R, Sang L, Chang L, Zhang Y, Zhang Z (2019) In-situ comparison of deformation behavior at 23 ℃ and 650 ℃ of laser direct melting deposited Ti-6Al-4V alloy. Mater Sci Eng, A 749:48–55. https://doi.org/10.1016/j.msea.2019.01.111

    Article  CAS  Google Scholar 

  23. Joyce HJ, Gao Q, Tan HH, Jagadish C, Kim Y, Fickenscher MA, Perera S, Hoang TB, Smith LM, Jackson HE, Yarrison-Rice JM, Zhang X, Zou J (2009) Unexpected benefits of rapid growth rate for III−V nanowires. Nano Lett 9(2):695–701. https://doi.org/10.1021/nl803182c

    Article  CAS  Google Scholar 

  24. Jung CS, Kim HS, Im HS, Park K, Park J, Ahn J-P, Yoo SJ, Kim J-G, Kim JN, Shim JH (2015) In situ temperature-dependent transmission electron microscopy studies of pseudobinary mGeTe·Bi2Te3 (m = 3–8) nanowires and first-principles calculations. Nano Lett 15(6):3923–3930. https://doi.org/10.1021/acs.nanolett.5b00755

    Article  CAS  Google Scholar 

  25. Behafarid F, Pandey S, Diaz RE, Stach EA, Cuenya BR (2014) An in situ transmission electron microscopy study of sintering and redispersion phenomena over size-selected metal nanoparticles: environmental effects. Phys Chem Chem Phys 16(34):18176–18184. https://doi.org/10.1039/c4cp02574a

    Article  CAS  Google Scholar 

  26. Zhu G, Jiang Y, Lin F, Zhang H, Jin C, Yuan J, Yang D, Zhang Z (2014) In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem Commun 50(67):9447–9450. https://doi.org/10.1039/c4cc03500c

    Article  CAS  Google Scholar 

  27. Zhang Q, Li H, Gan L, Ma Y, Golberg D, Zhai T (2016) In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chem Soc Rev 45(9):2694–2713. https://doi.org/10.1039/c6cs00161k

    Article  CAS  Google Scholar 

  28. Boston R, Schnepp Z, Nemoto Y, Sakka Y, Hall Simon R (2014) In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 344(6184):623–626. https://doi.org/10.1126/science.1251594

    Article  CAS  Google Scholar 

  29. Lin T-Y, Chen Y-L, Chang C-F, Huang G-M, Huang C-W, Hsieh C-Y, Lo Y-C, Lu K-C, Wu W-W, Chen L-J (2018) In situ investigation of defect-free copper nanowire growth. Nano Lett 18(2):778–784. https://doi.org/10.1021/acs.nanolett.7b03992

    Article  CAS  Google Scholar 

  30. Berg A, Mergenthaler K, Ek M, Pistol M-E, Reine Wallenberg L, Borgström MT (2014) In situetching for control over axial and radial III–V nanowire growth rates using HBr. Nanotechnology 25(50):505601. https://doi.org/10.1088/0957-4484/25/50/505601

    Article  CAS  Google Scholar 

  31. Aslam Z, Nicholls R, Koós A, Nicolosi V, Grobert N (2011) Current-induced restructuring and chemical modification of N-doped multi-walled carbon nanotubes. Adv Func Mater 21(20):3933–3937. https://doi.org/10.1002/adfm.201101036

    Article  CAS  Google Scholar 

  32. Ortega Y, Jäger W, Piqueras J, Häussler D, Fernández P (2013) In situTEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops. J Phys D Appl Phys 46(39):395301. https://doi.org/10.1088/0022-3727/46/39/395301

    Article  CAS  Google Scholar 

  33. Wang C-M, Genc A, Cheng H, Pullan L, Baer DR, Bruemmer SM (2014) In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni–Cr nanoparticles. Sci Rep 4(1):3683. https://doi.org/10.1038/srep03683

    Article  CAS  Google Scholar 

  34. Wu J, Gao W, Wen J, Miller DJ, Lu P, Zuo J-M, Yang H (2015) Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett 15(4):2711–2715. https://doi.org/10.1021/acs.nanolett.5b00414

    Article  CAS  Google Scholar 

  35. Liu Q, Zou R, Wu J, Xu K, Lu A, Bando Y, Golberg D, Hu J (2015) Molten Au/Ge alloy migration in Ge nanowires. Nano Lett 15(5):2809–2816. https://doi.org/10.1021/acs.nanolett.5b01144

    Article  CAS  Google Scholar 

  36. Cheng F, Lian L, Li L, Rao J, Li C, Qi T, Zhang Z, Zhang J, Gao Y (2019) Hybrid growth modes of PbSe nanocrystals with oriented attachment and grain boundary migration. Adv Sci 6(9):1802202. https://doi.org/10.1002/advs.201802202

    Article  CAS  Google Scholar 

  37. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175. https://doi.org/10.1021/jp993593c

    Article  CAS  Google Scholar 

  38. Vitos L, Ruban AV, Skriver HL, Kollár J (1998) The surface energy of metals. Surf Sci 411(1):186–202. https://doi.org/10.1016/S0039-6028(98)00363-X

    Article  CAS  Google Scholar 

  39. Stensgaard I, Feidenhans’l R, Sørensen J (1983) Surface relaxation of Cu (110): an ion scattering investigation. Surf Sci 128(2–3):281–293. https://doi.org/10.1016/S0039-6028(83)80032-6

    Article  CAS  Google Scholar 

  40. Jayanthi CS, Tosatti E, Fasolino A, Pietronero L (1985) Multilayer relaxation and melting of a metal surface. Surf Sci 152–153:155–161. https://doi.org/10.1016/0039-6028(85)90139-6

    Article  Google Scholar 

  41. Statiris P, Lu HC, Gustafsson T (1994) Temperature dependent sign reversal of the surface contraction of Ag(111). Phys Rev Lett 72(22):3574–3577. https://doi.org/10.1103/PhysRevLett.72.3574

    Article  CAS  Google Scholar 

  42. Ding Y, Fan F, Tian Z, Wang ZL (2009) Sublimation-induced shape evolution of silver cubes. Small 5(24):2812–2815. https://doi.org/10.1002/smll.200901189

    Article  CAS  Google Scholar 

  43. He L-B, Zhang L, Tan X-D, Tang L-P, Xu T, Zhou Y-L, Ren Z-Y, Wang Y, Teng C-Y, Sun L-T, Nie J-F (2017) Surface energy and surface stability of Ag nanocrystals at elevated temperatures and their dominance in sublimation-induced shape evolution. Small 13(27):1700743. https://doi.org/10.1002/smll.201700743

    Article  CAS  Google Scholar 

  44. Tolman RC (1949) The effect of droplet size on surface tension. J Chem Phys 17(3):333–337. https://doi.org/10.1063/1.1747247

    Article  CAS  Google Scholar 

  45. Lu HM, Jiang Q (2004) Size-dependent surface energies of nanocrystals. J Phys Chem B 108(18):5617–5619. https://doi.org/10.1021/jp0366264

    Article  CAS  Google Scholar 

  46. Xiong S, Qi W, Cheng Y, Huang B, Wang M, Li Y (2011) Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. Phys Chem Chem Phys 13(22):10648–10651. https://doi.org/10.1039/c0cp02102d

    Article  CAS  Google Scholar 

  47. Medasani B, Park YH, Vasiliev I (2007) Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys Rev B 75(23):235436. https://doi.org/10.1103/PhysRevB.75.235436

    Article  CAS  Google Scholar 

  48. Yao Y, Wei Y, Chen S (2015) Size effect of the surface energy density of nanoparticles. Surf Sci 636:19–24. https://doi.org/10.1016/j.susc.2015.01.016

    Article  CAS  Google Scholar 

  49. Sambles JR, Skinner LM, Lisgarten ND, Blackman M (1970) An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and the mean surface energy of solid silver. Proceed Roy Soc Lond A Math Phys Sci 318(1535):507–522. https://doi.org/10.1098/rspa.1970.0157

    Article  CAS  Google Scholar 

  50. Blackman M, Sambles J (1970) Melting of very small particles during evaporation at constant temperature. Nature 226(5249):938–938. https://doi.org/10.1038/226938a0

    Article  CAS  Google Scholar 

  51. He L-B, Zhang L, Tang L-P, Sun J, Zhang Q-B, Sun L-T (2018) Novel behaviors/properties of nanometals induced by surface effects. Materials Today Nano 1:8–21. https://doi.org/10.1016/j.mtnano.2018.04.006

    Article  Google Scholar 

  52. Cheng F, Lian L, Li L, Rao J, Li C, Qi T, Cheng Y, Zhang Z, Zhang J, Wang J, Gao Y (2020) Sublimation and related thermal stability of PbSe nanocrystals with effective size control evidenced by in situ transmission electron microscopy. Nano Energy 75:104816. https://doi.org/10.1016/j.nanoen.2020.104816

    Article  CAS  Google Scholar 

  53. Golberg D, Costa PMFJ, Wang M-S, Wei X, Tang D-M, Xu Z, Huang Y, Gautam UK, Liu B, Zeng H, Kawamoto N, Zhi C, Mitome M, Bando Y (2012) Nanomaterial engineering and property studies in a transmission electron microscope. Adv Mater 24(2):177–194. https://doi.org/10.1002/adma.201102579

    Article  CAS  Google Scholar 

  54. Regan B, Aloni S, Ritchie R, Dahmen U, Zettl A (2004) Carbon nanotubes as nanoscale mass conveyors. Nature 428(6986):924–927. https://doi.org/10.1038/nature02496

    Article  CAS  Google Scholar 

  55. Svensson K, Olin H, Olsson E (2004) Nanopipettes for metal transport. Phys Rev Lett 93(14):145901. https://doi.org/10.1103/PhysRevLett.93.145901

    Article  CAS  Google Scholar 

  56. Golberg D, Costa PM, Mitome M, Hampel S, Haase D, Mueller C, Leonhardt A, Bando Y (2007) Copper-filled carbon nanotubes: Rheostatlike behavior and femtogram copper mass transport. Adv Mater 19(15):1937–1942. https://doi.org/10.1002/adma.200700126

    Article  CAS  Google Scholar 

  57. Huang JY, Lo Y-C, Niu JJ, Kushima A, Qian X, Zhong L, Mao SX, Li J (2013) Nanowire liquid pumps. Nat Nanotechnol 8(4):277–281. https://doi.org/10.1038/nnano.2013.41

    Article  CAS  Google Scholar 

  58. Kim K, Jensen K, Zettl A (2009) Tuning nanoelectromechanical resonators with mass migration. Nano Lett 9(9):3209–3213. https://doi.org/10.1021/nl901449w

    Article  CAS  Google Scholar 

  59. Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol 3(9):533–537. https://doi.org/10.1038/nnano.2008.200

    Article  CAS  Google Scholar 

  60. Begtrup GE, Gannett W, Yuzvinsky TD, Crespi VH, Zettl A (2009) Nanoscale reversible mass transport for archival memory. Nano Lett 9(5):1835–1838. https://doi.org/10.1021/nl803800c

    Article  CAS  Google Scholar 

  61. Regan BC, Aloni S, Jensen K, Zettl A (2005) Surface-tension-driven nanoelectromechanical relaxation oscillator. Appl Phys Lett 86(12):123119. https://doi.org/10.1063/1.1887827

    Article  CAS  Google Scholar 

  62. Dong T, Zhang L, Zhang NBJ (2007) Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett 7(1):58–63. https://doi.org/10.1021/nl061980+

    Article  CAS  Google Scholar 

  63. Park G-S, Kim YB, Park SY, Li XS, Heo S, Lee M-J, Chang M, Kwon JH, Kim M, Chung U-I (2013) In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure. Nat Commun 4(1):1–9. https://doi.org/10.1038/ncomms3382

    Article  CAS  Google Scholar 

  64. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010):1515–1520. https://doi.org/10.1126/science.1195628

    Article  CAS  Google Scholar 

  65. Celano U, Goux L, Belmonte A, Opsomer K, Franquet A, Schulze A, Detavernier C, Richard O, Bender H, Jurczak M, Vandervorst W (2014) Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett 14(5):2401–2406. https://doi.org/10.1021/nl500049g

    Article  CAS  Google Scholar 

  66. Zhang Q, Yin K, Dong H, Zhou Y, Tan X, Yu K, Hu X, Xu T, Zhu C, Xia W (2017) Electrically driven cation exchange for in situ fabrication of individual nanostructures. Nat Commun 8(1):1–7. https://doi.org/10.1038/ncomms14889

    Article  CAS  Google Scholar 

  67. Sagel A, Wanderka N, Wunderlich RK, Schubert-Bischoff P, Fecht HJ (1997) Early stages of solid-state amorphization reaction during mechanical alloying of a multicomponent Zr-powder mixture. Scripta Mater 38(1):163–169. https://doi.org/10.1016/S1359-6462(97)00408-9

    Article  Google Scholar 

  68. Lucadamo G, Barmak K, Carpenter DT, Rickman JM (2001) Microstructure evolution during solid state reactions of Nb/Al multilayers. Acta Mater 49(14):2813–2826. https://doi.org/10.1016/S1359-6454(01)00176-8

    Article  CAS  Google Scholar 

  69. Wang L, Qin XY (2003) The effect of mechanical milling on the formation of nanocrystalline Mg2Si through solid-state reaction. Scr Mater 49(3):243–248. https://doi.org/10.1016/S1359-6462(03)00241-0

    Article  CAS  Google Scholar 

  70. Fashandi H, Lai CC, Dahlqvist M, Lu J, Rosen J, Hultman L, Greczynski G, Andersson M, Lloyd Spetz A, Eklund P (2017) Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chem Commun 53(69):9554–9557. https://doi.org/10.1039/c7cc04701k

  71. Kim G, Lee H, Kim J, Roh JW, Lyo I, Kim B-W, Lee KH, Lee W (2017) Up-scaled solid state reaction for synthesis of doped Mg2Si. Scr Mater 128:53–56. https://doi.org/10.1016/j.scriptamat.2016.10.010

    Article  CAS  Google Scholar 

  72. Mei S, He L, Wu X, Sun J, Wang B, Xiong X, Sun L (2014) Dynamic investigation of interface atom migration during heterostructure nanojoining. Nanoscale 6(1):405–411. https://doi.org/10.1039/c3nr03911k

    Article  CAS  Google Scholar 

  73. Qian F, Gradečak S, Li Y, Wen C-Y, Lieber CM (2005) Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5(11):2287–2291. https://doi.org/10.1021/nl051689e

    Article  CAS  Google Scholar 

  74. Liang LH, Li B (2006) Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B 73(15):153303. https://doi.org/10.1103/PhysRevB.73.153303

    Article  CAS  Google Scholar 

  75. Westover T, Jones R, Huang JY, Wang G, Lai E, Talin AA (2009) Photoluminescence, thermal transport, and breakdown in Joule-Heated GaN nanowires. Nano Lett 9(1):257–263. https://doi.org/10.1021/nl802840w

    Article  CAS  Google Scholar 

  76. Chen Y, Li Y, Ran G, Wu L, Ye C, Han Q, Wang H, Du H (2020) In-situ TEM observation of the evolution of dislocation loops and helium bubbles in a pre helium irradiated FeCrAl alloy during annealing. Prog Nucl Energy 129:103502. https://doi.org/10.1016/j.pnucene.2020.103502

    Article  CAS  Google Scholar 

  77. Gatalo M, Ruiz-Zepeda F, Hodnik N, Dražić G, Bele M, Gaberšček M (2019) Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: an in-situ heating transmission electron microscopy study. Nano Energy 63:103892. https://doi.org/10.1016/j.nanoen.2019.103892

    Article  CAS  Google Scholar 

  78. Meng S, Wu J, Zhao L, Zheng H, Jia S, Hu S, Meng W, Pu S, Zhao D, Wang J (2018) Atomistic Insight into the Redox Reactions in Fe/Oxide core-shell nanoparticles. Chem Mater 30(20):7306–7312. https://doi.org/10.1021/acs.chemmater.8b03679

    Article  CAS  Google Scholar 

  79. Roy R, Hill VG, Osborn EF (1952) Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc 74(3):719–722. https://doi.org/10.1021/ja01123a039

    Article  CAS  Google Scholar 

  80. Cora I, Fogarassy Z, Fornari R, Bosi M, Rečnik A, Pécz B (2020) In situ TEM study of κ→β and κ→γ phase transformations in Ga2O3. Acta Mater 183:216–227. https://doi.org/10.1016/j.actamat.2019.11.019

    Article  CAS  Google Scholar 

  81. Béché A, Rouvière JL, Clément L, Hartmann JM (2009) Improved precision in strain measurement using nanobeam electron diffraction. Appl Phys Lett 95(12):123114. https://doi.org/10.1063/1.3224886

    Article  CAS  Google Scholar 

  82. Meyer T, Kressdorf B, Roddatis V, Hoffmann J, Jooss C, Seibt M (2021) Phase Transitions in a perovskite thin film studied by environmental in situ heating nano-beam electron diffraction. Small Methods 5(9):2100464. https://doi.org/10.1002/smtd.202100464

    Article  CAS  Google Scholar 

  83. Tang L, Wu W, He L, Yu K, Xu T, Zhang Q, Zhang L, Sun L (2019) Novel interface in CuAg nanostructure induced by size effect. J Phys Chem Lett 10(8):1973–1980. https://doi.org/10.1021/acs.jpclett.9b00484

    Article  CAS  Google Scholar 

  84. Ni Y, Kan C, He L, Zhu X, Jiang M, Shi D (2019) Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments. Photon Res 7(5):558–565. https://doi.org/10.1364/prj.7.000558

    Article  CAS  Google Scholar 

  85. Shi L, He L, Shangguan L, Zhou Y, Wang B, Zhang L, Yang Y, Teng C, Sun L (2022) Revealing the phase segregation and evolution dynamics in binary nanoalloys via electron beam-assisted ultrafast heating and cooling. ACS Nano 16(1):921–929. https://doi.org/10.1021/acsnano.1c08500

    Article  CAS  Google Scholar 

  86. Yan Y, Du JS, Gilroy KD, Yang D, Xia Y, Zhang H (2017) Intermetallic nanocrystals: syntheses and catalytic applications. Adv Mater 29(14):1605997. https://doi.org/10.1002/adma.201605997

    Article  Google Scholar 

  87. Chung DY, Jun SW, Yoon G, Kwon SG, Shin DY, Seo P, Yoo JM, Shin H, Chung Y-H, Kim H, Mun BS, Lee K-S, Lee N-S, Yoo SJ, Lim D-H, Kang K, Sung Y-E, Hyeon T (2015) Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J Am Chem Soc 137(49):15478–15485. https://doi.org/10.1021/jacs.5b09653

    Article  CAS  Google Scholar 

  88. Kuttiyiel KA, Sasaki K, Su D, Wu L, Zhu Y, Adzic RR (2014) Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat Commun 5(1):5185. https://doi.org/10.1038/ncomms6185

    Article  CAS  Google Scholar 

  89. Xiong Y, Yang Y, Joress H, Padgett E, Gupta U, Yarlagadda V, Agyeman-Budu DN, Huang X, Moylan TE, Zeng R, Kongkanand A, Escobedo FA, Brock JD, DiSalvo FJ, Muller DA, Abruña HD (2019) Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proc Natl Acad Sci 116(6):1974. https://doi.org/10.1073/pnas.1815643116

    Article  CAS  Google Scholar 

  90. Sun Y, Liu Y, Truong TT, Ren Y (2012) Thermal transformation of δ-MnO2 nanoflowers studied by in-situ TEM. Sci China Chem 55(11):2346–2352. https://doi.org/10.1007/s11426-012-4688-5

    Article  CAS  Google Scholar 

  91. Zhang L, Feng Q, Nie A, Liu J, Wang H, Fang Y (2014) In situ study of thermal stability of copper oxide nanowires at anaerobic environment. J Nanomater 2014:91. https://doi.org/10.1155/2014/670849

    Article  CAS  Google Scholar 

  92. Wu J, Liu X, Bi H, Song Y, Wang C, Cao Q, Liu Z, Wang M, Che R (2016) Microwave sintering and in-situ transmission electron microscopy heating study of Li1·2(Mn0·53Co0.27)O2 with improved electrochemical performance. J Power Sources 326:104–111. https://doi.org/10.1016/j.jpowsour.2016.06.102

    Article  CAS  Google Scholar 

  93. Nam K-W, Bak S-M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K-Y, Yang X-Q (2013) Combining in situ synchrotron x-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv Func Mater 23(8):1047–1063. https://doi.org/10.1002/adfm.201200693

    Article  CAS  Google Scholar 

  94. Schwarz RB, Johnson WL (1983) Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys Rev Lett 51(5):415–418. https://doi.org/10.1103/PhysRevLett.51.415

    Article  CAS  Google Scholar 

  95. Holloway K, Sinclair R (1987) Amorphous Ti–Si alloy formed by interdiffusion of amorphous Si and crystalline Ti multilayers. J Appl Phys 61(4):1359–1364. https://doi.org/10.1063/1.338114

    Article  CAS  Google Scholar 

  96. Si O, Kouzaki T, Yoshida T, Sinclair R (1991) Interface microstructure of titanium thin-film/silicon single-crystal substrate correlated with electrical barrier heights. J Appl Phys 70(2):827–832. https://doi.org/10.1063/1.349641

    Article  Google Scholar 

  97. Konno TJ, Sinclair R (1992) Crystallization of silicon in aluminium/amorphous-silicon multilayers. Philos Mag B 66(6):749–765. https://doi.org/10.1080/13642819208220126

    Article  CAS  Google Scholar 

  98. Konno TJ, Sinclair R (1995) Metal-mediated crystallization of amorphous silicon in silicon-silver layered systems. Philos Mag B 71(2):163–178. https://doi.org/10.1080/01418639508240304

    Article  CAS  Google Scholar 

  99. Min KH, Sinclair R, Park IS, Kim ST, Chung UI (2005) Crystallization behaviour of ALD-Ta2O5 thin films: the application of in-situ TEM. Phil Mag 85(18):2049–2063. https://doi.org/10.1080/14786430500036546

  100. Danev R, Yanagisawa H, Kikkawa M (2019) Cryo-electron microscopy methodology: current aspects and future directions. Trends Biochem Sci 44(10):837–848. https://doi.org/10.1016/j.tibs.2019.04.008

    Article  CAS  Google Scholar 

  101. Wang L, Han X, Liu P, Yue Y, Zhang Z, Ma E (2010) In situ observation of dislocation behavior in nanometer grains. Phys Rev Lett 105(13):135501. https://doi.org/10.1103/PhysRevLett.105.135501

    Article  CAS  Google Scholar 

  102. Taheri ML, Stach EA, Arslan I, Crozier PA, Kabius BC, LaGrange T, Minor AM, Takeda S, Tanase M, Wagner JB, Sharma R (2016) Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170:86–95. https://doi.org/10.1016/j.ultramic.2016.08.007

    Article  CAS  Google Scholar 

  103. Miller B, Pakzad A, Mick S (2019) Real-time electron counting for continuous TEM imaging of sensitive samples. Microsc Microanal 25(S2):1718–1719. https://doi.org/10.1017/s1431927619009322

    Article  Google Scholar 

  104. Idrobo JC, Zhou W (2017) A short story of imaging and spectroscopy of two-dimensional materials by scanning transmission electron microscopy. Ultramicroscopy 180:156–162. https://doi.org/10.1016/j.ultramic.2017.02.002

    Article  CAS  Google Scholar 

  105. Zhang B, Wang J, Wu B, Guo XW, Wang YJ, Chen D, Zhang YC, Du K, Oguzie EE, Ma XL (2018) Unmasking chloride attack on the passive film of metals. Nat Commun 9(1):2559. https://doi.org/10.1038/s41467-018-04942-x

    Article  CAS  Google Scholar 

  106. Winterstein JP, Lin PA, Sharma R (2015) Temperature calibration for in situ environmental transmission electron microscopy experiments. Microsc Microanal 21(6):1622–1628. https://doi.org/10.1017/s1431927615015196

  107. Jiang Y, Zhang Z, Yuan W, Zhang X, Wang Y, Zhang Z (2018) Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res 11(1):42–67. https://doi.org/10.1007/s12274-017-1645-9

    Article  Google Scholar 

  108. Liao H-G, Zheng H (2016) Liquid cell transmission electron microscopy. Annu Rev Phys Chem 67(1):719–747. https://doi.org/10.1146/annurev-physchem-040215-112501

    Article  CAS  Google Scholar 

  109. Fernando JFS, Zhang C, Firestein KL, Golberg D (2017) Optical and optoelectronic property analysis of nanomaterials inside transmission electron microscope. Small 13(45):1701564. https://doi.org/10.1002/smll.201701564

    Article  CAS  Google Scholar 

  110. Song C, Yang S, Li X, Li X, Feng J, Pan A, Wang W, Xu Z, Bai X (2019) Optically manipulated nanomechanics of semiconductor nanowires. Chin Phys B 28(5):054204. https://doi.org/10.1088/1674-1056/28/5/054204

    Article  CAS  Google Scholar 

  111. Zhu S, Fu J, Li H, Zhu L, Hu Y, Xia W, Zhang X, Peng Y, Zhang J (2018) Direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials. ACS Nano 12(4):3442–3448. https://doi.org/10.1021/acsnano.8b00058

    Article  CAS  Google Scholar 

  112. Du H, Zhao X, Rybakov FN, Borisov AB, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev NS, Zhang Y, Che R, Blügel S, Tian M (2018) Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys Rev Lett 120(19):197203. https://doi.org/10.1103/PhysRevLett.120.197203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbing He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, S., He, L. (2023). In-Situ Heating TEM. In: Sun, L., Xu, T., Zhang, Z. (eds) In-Situ Transmission Electron Microscopy. Springer, Singapore. https://doi.org/10.1007/978-981-19-6845-7_4

Download citation

Publish with us

Policies and ethics