Skip to main content

Physical Activity in Patients with Breast Cancer

  • Chapter
  • First Online:
Physical Therapy and Research in Patients with Cancer
  • 384 Accesses

Abstract

Physical activity is an important lifestyle habit in patients with breast cancer. Engaging in high levels of physical activity can help prevent the development of breast cancer and improve life expectancy after the disease. Physical therapists must help their patients acquire these benefits of physical activity. To do so, it is necessary to understand the evidence of physical activity benefits among patients with breast cancer and the different methods and characteristics of assessing physical activity and how to apply them clinically.

In addition, maintaining physical activity is beneficial for breast cancer treatments, such as surgery, chemotherapy, and hormone therapy. Although its development has greatly prolonged life expectancy, breast cancer treatment leads to various adverse events, such as lymphedema, neuropathy, joint pain, and bone loss. It is now known that physical activity plays an important role in reducing these conditions. In addition, research on exercise therapy for cardiotoxicity caused by molecular targeted drugs and myokines produced by muscles is being conducted; these areas are expected to develop in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albanes D, Blair A, Taylor PR. Physical activity and risk of cancer in the NHANES I population. Am J Public Health. 1989;79(6):744–50.

    Article  CAS  Google Scholar 

  2. World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project. Food, Nutrition, Physical Activity, and the Prevention of Breast Cancer. Diet, nutrition, physical activity, and Breast Cancer Survivors. 2017.

    Google Scholar 

  3. Wu Y, Zhang D, Kang S. Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat. 2013;137(3):869–82.

    Article  Google Scholar 

  4. Suzuki R, Iwasaki M, Yamamoto S, Inoue M, Sasazuki S, Sawada N, et al. Leisure-time physical activity and breast cancer risk defined by estrogen and progesterone receptor status—the Japan Public Health Center-based Prospective Study. Prev Med. 2011;52(3–4):227–33.

    Article  Google Scholar 

  5. Enger SM, Ross RK, Paganini-Hill A, Carpenter CL, Bernstein L. Body size, physical activity, and breast cancer hormone receptor status: results from two case-control studies. Cancer Epidemiol Biomark Prev. 2000;9(7):681–7.

    CAS  Google Scholar 

  6. Japanese Breast Cancer Society. The Japanese Breast Cancer Society clinical practice guidelines for epidemiology and prevention of breast cancer. 2018 ed. 2018.

    Google Scholar 

  7. Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity, risk of death and recurrence in breast cancer survivors: a systematic review and meta-analysis of epidemiological studies. Acta Oncol Stockh Swed. 2015;54(5):635–54.

    Article  Google Scholar 

  8. Zhong S, Jiang T, Ma T, Zhang X, Tang J, Chen W, et al. Association between physical activity and mortality in breast cancer: a meta-analysis of cohort studies. Eur J Epidemiol. 2014;29(6):391–404.

    Article  Google Scholar 

  9. Cacciamani GE, Stern MC, Medina LG, Gill K, Sotelo R, Gill IS. Cancer awareness crusades-pink ribbons and growing moustaches. Lancet Oncol. 2019;20(11):1491–2.

    Article  Google Scholar 

  10. McTiernan A, Kooperberg C, White E, Wilcox S, Coates R, Adams-Campbell LL, et al. Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women’s Health Initiative Cohort Study. Obstet Gynecol Surv. 2004;59(3):203–4.

    Article  Google Scholar 

  11. Suzuki S, Kojima M, Tokudome S, Mori M, Sakauchi F, Fujino Y, et al. Effect of physical activity on breast cancer risk: findings of the Japan Collaborative Cohort Study. Cancer Epidemiol Biomark Prev. 2008;17(12):3396–401.

    Article  Google Scholar 

  12. Beasley JM, Kwan ML, Chen WY, Weltzien EK, Kroenke CH, Lu W, et al. Meeting the physical activity guidelines and survival after breast cancer: findings from the after breast cancer pooling project. Breast Cancer Res Treat. 2012;131(2):637–43.

    Article  Google Scholar 

  13. Bertram LAC, Stefanick ML, Saquib N, Natarajan L, Patterson RE, Bardwell W, et al. Physical activity, additional breast cancer events, and mortality among early-stage breast cancer survivors: findings from the WHEL Study. Cancer Causes Control. 2011;22(3):427–35.

    Article  Google Scholar 

  14. Kampshoff CS, Jansen F, van Mechelen W, May AM, Brug J, Chinapaw MJM, et al. Determinants of exercise adherence and maintenance among cancer survivors: a systematic review. Int J Behav Nutr Phys Act. 2014;11:80.

    Article  Google Scholar 

  15. Saito T, Okamura A, Inoue J, Makiura D, Doi H, Yakushijin K, et al. Determinants of physical activity in outpatients with cancer during chemotherapy treatment. Bull Health Sci Kobe. 2018;34:1–11.

    Google Scholar 

  16. Essery R, Geraghty AWA, Kirby S, Yardley L. Predictors of adherence to home-based physical therapies: a systematic review. Disabil Rehabil. 2017;39(6):519–34.

    Article  Google Scholar 

  17. Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, et al. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J Clin Oncol. 2008;26(24):3958–64.

    Article  Google Scholar 

  18. Inoue M, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S, et al. Daily total physical activity level and total cancer risk in men and women: results from a large-scale population-based cohort study in Japan. Am J Epidemiol. 2008;168(4):391–403.

    Article  Google Scholar 

  19. Floegel TA, Florez-Pregonero A, Hekler EB, Buman MP. Validation of consumer-based hip and wrist activity monitors in older adults with varied ambulatory abilities. J Gerontol A Biol Sci Med Sci. 2017;72(2):229–36.

    Article  Google Scholar 

  20. Crouter SE, Schneider PL, Karabulut M, Bassett DR. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003;35(8):1455–60.

    Article  Google Scholar 

  21. Hekler EB, Buman MP, Grieco L, Rosenberger M, Winter SJ, Haskell W, et al. Validation of physical activity tracking via android smartphones compared to ActiGraph accelerometer: laboratory-based and free-living validation studies. JMIR Mhealth Uhealth. 2015;3(2):e36.

    Article  Google Scholar 

  22. Mâsse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37(11):S544–54.

    Article  Google Scholar 

  23. Hart TL, Swartz AM, Cashin SE, Strath SJ. How many days of monitoring predict physical activity and sedentary behaviour in older adults? Int J Behav Nutr Phys Act. 2011;8(1):62.

    Article  Google Scholar 

  24. DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013;14(6):500–15.

    Article  Google Scholar 

  25. Shaitelman SF, Cromwell KD, Rasmussen JC, Stout NL, Armer JM, Lasinski BB, et al. Recent progress in the treatment and prevention of cancer-related lymphedema: lymphedema treatment and prevention. CA Cancer J Clin. 2015;65(1):55–81.

    Article  Google Scholar 

  26. Baumann FT, Reike A, Reimer V, Schumann M, Hallek M, Taaffe DR, et al. Effects of physical exercise on breast cancer-related secondary lymphedema: a systematic review. Breast Cancer Res Treat. 2018;170(1):1–13.

    Article  CAS  Google Scholar 

  27. De Vrieze T, Gebruers N, Nevelsteen I, Tjalma WAA, Thomis S, De Groef A, et al. Physical activity level and age contribute to functioning problems in patients with breast cancer-related lymphedema: a multicentre cross-sectional study. Support Care Cancer. 2020;28(12):5717–31.

    Article  Google Scholar 

  28. Yildiz Kabak V, Gursen C, Aytar A, Akbayrak T, Duger T. Physical activity level, exercise behavior, barriers, and preferences of patients with breast cancer–related lymphedema. Support Care Cancer. 2021;29(7):3593–602.

    Article  Google Scholar 

  29. Johansson K, Ingvar C, Albertsson M, Ekdahl C. Factors associated with the development of arm lymphedema following breast cancer treatment: a match pair case-control study. Lymphology. 2002;35(2):59–71.

    CAS  Google Scholar 

  30. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet Lond Engl. 2005;365(9453):60–2.

    Article  CAS  Google Scholar 

  31. Eastell R, Adams JE, Coleman RE, Howell A, Hannon RA, Cuzick J, et al. Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(7):1051–7.

    Article  CAS  Google Scholar 

  32. Coleman RE, Banks LM, Girgis SI, Kilburn LS, Vrdoljak E, Fox J, et al. Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol. 2007;8(2):119–27.

    Article  CAS  Google Scholar 

  33. Thomas GA, Cartmel B, Harrigan M, Fiellin M, Capozza S, Zhou Y, et al. The effect of exercise on body composition and bone mineral density in breast cancer survivors taking aromatase inhibitors. Obes Silver Spring Md. 2017;25(2):346–51.

    Article  CAS  Google Scholar 

  34. Hadji P, Aapro MS, Body J-J, Gnant M, Brandi ML, Reginster JY, et al. Management of Aromatase Inhibitor-Associated Bone Loss (AIBL) in postmenopausal women with hormone sensitive breast cancer: joint position statement of the IOF, CABS, ECTS, IEG, ESCEO IMS, and SIOG. J Bone Oncol. 2017;7:1–12.

    Article  Google Scholar 

  35. Boing L, Vieira M d CS, Moratelli J, Bergmann A, Guimarães AC d A. Effects of exercise on physical outcomes of breast cancer survivors receiving hormone therapy—a systematic review and meta-analysis. Maturitas. 2020;141:71–81.

    Article  CAS  Google Scholar 

  36. Brooke-Wavell K, Jones PR, Hardman AE, Null T, Yamada Y. Commencing, continuing and stopping brisk walking: effects on bone mineral density, quantitative ultrasound of bone and markers of bone metabolism in postmenopausal women. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2001;12(7):581–7.

    Article  CAS  Google Scholar 

  37. Saito T, Ono R, Kono S, Asano M, Fukuta A, Tanaka Y, et al. Physical activity among patients with breast cancer receiving aromatase inhibitors is associated with bone health: a cross-sectional observational study. Breast Cancer Res Treat. 2020;182(1):187–93.

    Article  CAS  Google Scholar 

  38. Crew KD, Greenlee H, Capodice J, Raptis G, Brafman L, Fuentes D, et al. Prevalence of joint symptoms in postmenopausal women taking aromatase inhibitors for early-stage breast cancer. J Clin Oncol. 2007;25(25):3877–83.

    Article  Google Scholar 

  39. Mao JJ, Stricker C, Bruner D, Xie S, Bowman MA, Farrar JT, et al. Patterns and risk factors associated with aromatase inhibitor-related arthralgia among breast cancer survivors. Cancer. 2009;115(16):3631–9.

    Article  CAS  Google Scholar 

  40. Chim K, Xie SX, Stricker CT, Li QS, Gross R, Farrar JT, et al. Joint pain severity predicts premature discontinuation of aromatase inhibitors in breast cancer survivors. BMC Cancer. 2013;13(1):401.

    Article  Google Scholar 

  41. Lu G, Zheng J, Zhang L. The effect of exercise on aromatase inhibitor-induced musculoskeletal symptoms in breast cancer survivors: a systematic review and meta-analysis. Support Care Cancer. 2020;28(4):1587–96.

    Article  Google Scholar 

  42. Roberts KE, Rickett K, Feng S, Vagenas D, Woodward NE. Exercise therapies for preventing or treating aromatase inhibitor-induced musculoskeletal symptoms in early breast cancer. Cochrane Breast Cancer Group, editor. Cochrane Database Syst Rev. 2020. https://doi.wiley.com/10.1002/14651858.CD012988.pub2.

  43. Brown JC, Mao JJ, Stricker C, Hwang W-T, Tan K-S, Schmitz KH. Aromatase inhibitor associated musculoskeletal symptoms are associated with reduced physical activity among breast cancer survivors. Breast J. 2014;20(1):22–8.

    Article  CAS  Google Scholar 

  44. De Laurentiis M, Cancello G, D’Agostino D, Giuliano M, Giordano A, Montagna E, et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(1):44–53.

    Article  Google Scholar 

  45. Dougherty PM, Cata JP, Cordella JV, Burton A, Weng H-R. Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain. 2004;109(1):132–42.

    Article  CAS  Google Scholar 

  46. Bhatnagar B, Gilmore S, Goloubeva O, Pelser C, Medeiros M, Chumsri S, et al. Chemotherapy dose reduction due to chemotherapy induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or adjuvant settings: a single-center experience. Springerplus. 2014;3:366.

    Article  Google Scholar 

  47. Mols F, Beijers AJM, Vreugdenhil G, Verhulst A, Schep G, Husson O. Chemotherapy-induced peripheral neuropathy, physical activity and health-related quality of life among colorectal cancer survivors from the PROFILES registry. J Cancer Surviv. 2015;9(3):512–22.

    Article  Google Scholar 

  48. Kolb NA, Smith AG, Singleton JR, Beck SL, Stoddard GJ, Brown S, et al. The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol. 2016;73(7):860.

    Article  Google Scholar 

  49. Kanzawa-Lee GA, Larson JL, Resnicow K, Smith EML. Exercise effects on chemotherapy-induced peripheral neuropathy: a comprehensive integrative review. Cancer Nurs. 2020;43(3):E172–85.

    Article  Google Scholar 

  50. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain. 2014;155(12):2461–70.

    Article  Google Scholar 

  51. Saito T, Okamura A, Inoue J, Makiura D, Doi H, Yakushijin K, et al. Anemia is a novel predictive factor for the onset of severe chemotherapy-induced peripheral neuropathy in lymphoma patients receiving rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone therapy. Oncol Res. 2019;27(4):469–74.

    Article  Google Scholar 

  52. Mizrahi D, Park SB, Li T, Timmins HC, Trinh T, Au K, et al. Hemoglobin, body mass index, and age as risk factors for paclitaxel- and oxaliplatin-induced peripheral neuropathy. JAMA Netw Open. 2021;4(2):e2036695.

    Article  Google Scholar 

  53. Saito T, Makiura D, Inoue J, Doi H, Yakushijin K, Okamura A, et al. Comparison between quantitative and subjective assessments of chemotherapy-induced peripheral neuropathy in cancer patients: a prospective cohort study. Phys Ther Res. 2020;23(2):166–71.

    Article  Google Scholar 

  54. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  Google Scholar 

  55. Katzorke N, Rack BK, Haeberle L, Neugebauer JK, Melcher CA, Hagenbeck C, et al. Prognostic value of HER2 on breast cancer survival. J Clin Oncol. 2013;31(15_suppl):640.

    Article  Google Scholar 

  56. Dempsey N, Rosenthal A, Dabas N, Kropotova Y, Lippman M, Bishopric NH. Trastuzumab-induced cardiotoxicity: a review of clinical risk factors, pharmacologic prevention, and cardiotoxicity of other HER2-directed therapies. Breast Cancer Res Treat. 2021;188(1):21–36.

    Article  CAS  Google Scholar 

  57. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  Google Scholar 

  58. Perez EA, Romond EH, Suman VJ, Jeong J-H, Sledge G, Geyer CE, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(33):3744–52.

    Article  CAS  Google Scholar 

  59. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(25):3910–6.

    Article  CAS  Google Scholar 

  60. Gilchrist SC, Barac A, Ades PA, Alfano CM, Franklin BA, Jones LW, et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. Circulation. 2019;139(21). https://www.ahajournals.org/doi/10.1161/CIR.0000000000000679.

  61. Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary Behavior Research Network (SBRN)—terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.

    Article  Google Scholar 

  62. Stamatakis E, Chau JY, Pedisic Z, Bauman A, Macniven R, Coombs N, et al. Are sitting occupations associated with increased all-cause, cancer, and cardiovascular disease mortality risk? A pooled analysis of seven British population cohorts. PLoS One. 2013;8(9):e73753.

    Article  CAS  Google Scholar 

  63. Zeiher J, Duch M, Kroll LE, Mensink GBM, Finger JD, Keil T. Domain-specific physical activity patterns and cardiorespiratory fitness among the working population: findings from the cross-sectional German Health Interview and Examination Survey. BMJ Open. 2020;10(4):e034610.

    Article  Google Scholar 

  64. Pedersen BK, Akerström TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol Bethesda Md 1985. 2007;103(3):1093–98.

    Google Scholar 

  65. Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L, Pedersen BK. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab. 2011;301(3):E504–10.

    Article  CAS  Google Scholar 

  66. Gannon NP, Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer. 2015;136(4):E197–202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, T., Ono, R. (2022). Physical Activity in Patients with Breast Cancer. In: Morishita, S., Inoue, J., Nakano, J. (eds) Physical Therapy and Research in Patients with Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-6710-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6710-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6709-2

  • Online ISBN: 978-981-19-6710-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics