Skip to main content

Structural Characterization of Beta-Glucanase from Actinobacteria

  • Chapter
  • First Online:
Microbial Beta Glucanases

Abstract

Beta-glucanases have prominent applications in the brewing industry as well as the feed enzyme industry. Streptomyces origin beta-glucanases have more demand due to the broad substrate specificity, high catalytic activity, and stability in wide ranges of pH and temperatures. Many industrially valuable beta-glucanase are identified from novel actinomycetes strains. One of the strategies for the identification of novel glucanohydrolase includes the prediction of the enzymatic function of the uncharacterized gene sequence using in silico approaches. The gene sequence and corresponding protein structure of a particular enzyme contain all the specificity of the enzyme. The theoretical overview of predicted proteins and their coding genes provides a basic concept of the protein domain architecture that is likely to regulate their function, stability and their interaction with substrates. The in silico study of structure–function relationships exclusively reveals the absolute potential of beta-glucanase enzymes. The insights provided by in silico tools on protein structure and function can be channelized for increased enzyme production and stability towards industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham A, Narayanan SP, Philip S, Nair DG, Chandrasekharan A, Kochupurackal J (2013) In silico characterization of a novel β-1,3-glucanase gene from bacillus amyloliquefaciens-a bacterial endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. J Mol Model 19(3):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Anne J, Vrancken K, Mellaert LV, Impe JV, Bernaerts K (2014) Protein secretion biotechnology in gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim Biophys Acta 1843:1750–1761

    Article  CAS  PubMed  Google Scholar 

  • Barrett K, Lange L (2019) Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnol Biofuels 12:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Bielecki S, Galas E (1991) Microbial beta-glucanases different from cellulases. Crit Rev Biotechnol 10(4):275–304

    Article  CAS  PubMed  Google Scholar 

  • Blackman LM, Cullerne DP, Hardham AR (2014) Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 15:785

    Article  PubMed  PubMed Central  Google Scholar 

  • Book AJ, Lewin GR, McDonald BR, Takasuka TE, Wendt-Pienkowski E, Doering DT, Suh S, Raffa KF, Fox BG et al (2016) Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinated gene expression. PLoS Biol 14(6):e1002475

    Article  PubMed  PubMed Central  Google Scholar 

  • Bull AT, Chesters CGC (1966) The biochemistry of laminarin and the nature of laminarinase. Adv Enzymol Relat Areas Mol Biol 28:325–364

    CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. En. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Chinnathambi V, Balasubramanium M, Gurusamy R, Paramasamy G (2015) Molecular cloning and expression of a family 6 cellobiohydrolase gene cbhII from Penicillium funiculosum nCL-1. Adv Biosci Biotechnol 6:213–222

    Article  CAS  Google Scholar 

  • Da Vinha FN, Gravina-Oliveira MP, Franco MN, Macrae A, da Silva Bon EP, Nascimento RP, Coelho RR (2011) Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Appl Biochem Biotechnol 164(3):256–267

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RA, Jagtap S, Mandal MK, Mandal SK (2016) Purification, biochemical characterization and structural modelling of alkali-stable β-1,4-xylan xylanohydrolase from aspergillus fumigatus R1 isolated from soil. BMC Biotechnol 16:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Edison LK, Dan VM, Reji SR, Pradeep NS (2020a) A strategic production improvement of Streptomyces Beta glucanase enzymes with aid of codon optimization and heterologous expression. Biosci Biotechnol Res Asia 17(3):587–599

    Article  Google Scholar 

  • Edison LK, Reji SR, Pradeep NS (2020b) In silico perceptions in structural elucidation of Exo-β-1,4-glucanase (exo14) and endo-β-1,3-glucanase (endo13) from Streptomyces spp. J Appl Biol Biotechnol 8(6):67–81

    CAS  Google Scholar 

  • Freudl R (2018) Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Factories 17(1):52

    Article  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH (2003) Lic16A of clostridium thermocellum, a non-cellulosomal, highly complex endo-b-1,3-glucanase bound to the outer cell surface. Microbiology (Reading) 149(4):1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A (2005) Protein identification and analysis tools on the ExPASy Server. In: The Proteomics Protocols Handbook, Humana Press, (ed) John M. Walker, pp 571–607

    Google Scholar 

  • Geoffrey BA, Anke H, Santosh KP, Sebastian S, Uwe TB (2011) Discovery and protein engineering of biocatalysts for organic synthesis. Adv Synth Catal 353(13):2191–2215

    Article  Google Scholar 

  • George J, Arunachalam R, Paulkumar K, Wesely EG, Shiburaj S, Annadurai G (2010) Characterization and phylogenetic analysis of cellulase producing Streptomyces noboritoensis SPKC1. Interdiscip Sci 2(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Gilkes NR, Claeyssens M, Aebersold R, Henrissat B, Meinke A, Morrison HD, Kilburn DG, Warren RAJ, Miller RC (1991) Structural and functional relationships in two families of beta-1,4-glycanases. Eur J Biochem 202(2):367–377

    Article  CAS  PubMed  Google Scholar 

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Reannotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Factories 11:134

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp S 41:95–98

    CAS  Google Scholar 

  • Handfield M, Levesque RC (1999) Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiol Rev 23(1, January):69–91

    Article  CAS  PubMed  Google Scholar 

  • Heinsch SC, Hsu SY, Otto-Hanson L, Kinkel L, Smanski MJ (2019) Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils. BMC Genomics 20(1):994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang KC, Lai TH, Lin CS, Chen YT, Liau CY (2010) The chitinolytic activities of Streptomyces sp. TH-11. Int J Mol Sci 12(1):56–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong TY, Hsiao YY, Meng M, Li TT (2008) The 1.5 a structure of endo-1,3-beta-glucanase from Streptomyces sioyaensis: evolution of the active-site structure for 1,3-beta-glucan-binding specificity and hydrolysis. Acta Crystallogr D Biol Crystallogr 64(9):964–970

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, Fincher GB (2001) Structure-function relationships of β-D-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47(1–2):73–91

    Article  CAS  PubMed  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898

    CAS  PubMed  Google Scholar 

  • Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the Escherichia coli tat pathway in outer membrane integrity. Mol Microbiol 48(5):1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Jensen MS, Fredriksen L, MacKenzie AK, Pope PB, Leiros I, Chylenski P, Williamson AK, Christopeit T, Østby H et al (2018) Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS One 13(5):e0197862

    Article  PubMed  PubMed Central  Google Scholar 

  • Juncosa M, Pons J, Dot T, Querol E, Planas A (1994) Identification of active site carboxylic residues in bacillus licheniformis 1,3-1,4-beta-D-glucan 4-glucanohydrolase by site-directed mutagenesis. J Biol Chem 269(20):14530–14535

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39(12):4202–4206

    Article  CAS  Google Scholar 

  • Krah M, Misselwitz R, Politz O, Thomsen KK, Welfle H, Borriss R (1998) The laminarinase from thermophilic eubacterium Rhodothermus marinus: conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis. Eur J Biochem 257(1):101–111

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6:1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamp AE, Evans AM, Moritz JS (2015) The effects of pelleting and glucanase supplementation in hulled barley based diets on feed manufacture, broiler performance, and digesta viscosity. J Appl Poult Res 24(3):295–303

    Article  CAS  Google Scholar 

  • Lanka S, Talluri VR, Ganesh J, Latha NL (2015) Homology modelling, molecular dynamic simulations and docking studies of a new cold active extracellular lipase. En:L A from Emericella nidulans NFCCI 3643. Trends Bioinformatics 8(2):37–51

    Article  CAS  Google Scholar 

  • Leo VV, Asem D, Zothanpuia, Singh BP (2018) Actinobacteria: A Highly Potent Source for holocellulose Degrading Enzymes. In: Singh BP et al (eds) Actinobacteria. New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 191–205

    Chapter  Google Scholar 

  • Lim JH, Lee CR, Dhakshnamoorthy V, Park JS, Hong SK (2016) Molecular characterization of Streptomyces coelicolor a (3). FEMS Microbiol Lett 363(3):245

    Article  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Casado G, Urbanowicz BR, Damasceno CM, Rose JK (2008) Plant glycosyl hydrolases and biofuels: a natural marriage. Curr Opin Plant Biol 11(3):329–337

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(506):577. Erratum in: Microbiol Mol Biol Rev. (2002) 2066:2739

    Google Scholar 

  • Ma Y, Liu Y, Cheng J (2018) Protein secondary structure prediction based on data partition and semi-random subspace method. Sci Rep 8(1):9856

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik A, Kim YR, Jang IH, Hwang S, Oh DC, Kim SB (2020) Genome-based analysis for the bioactive potential of Streptomyces yeochonensis CN732, an acidophilic filamentous soil actinobacterium. BMC Genomics 21(1):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann JW, Jeffries TW, Macmillan JD (1978) Production and ecological significance of yeast cell wall degrading enzymes from Oerskovia. Appl Environ Microbiol 36(4):594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41(Database issue):D348–D352

    CAS  PubMed  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16, 404–405

    Google Scholar 

  • Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O (2001) The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of clan-B glycoside hydrolases. Structure 9(6):513–525

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro GL, de Azevedo-Martins AC, Albano RM, de Souza W, Frases S (2017) Comprehensive analysis of the cellulolytic system reveals its potential for deconstruction of lignocellulosic biomass in a novel Streptomyces sp. Appl Microbiol Biotechnol 101(1):301–319

    Article  CAS  PubMed  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(Web Server issue):W320–W324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röttig M, Rausch C, Kohlbacher O (2010) Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families. PLoS Comput Biol 6(1):e1000636

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahay A, Shakya M (2010) In silico analysis and homology modelling of antioxidant proteins of spinach. J Proteomics Bioinform 03(5):148–154

    Article  CAS  Google Scholar 

  • Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Gregg GT, Beckham GT (2012) Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 7(11):e48615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandgren M, Wu M, Karkehabadi S, Mitchinson C, Kelemen BR, Larenas EA, Ståhlberg J, Hansson H (2013) The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B. J Mol Biol 425(3):622–635

    Article  CAS  PubMed  Google Scholar 

  • Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG (2013) Aerobic deconstruction of cellulosic biomass by an insect associated Streptomyces. Science 3(1030):1–10

    Google Scholar 

  • Tanabe Y, Pang Z, Oda M (2008) Cloning and sequencing of endo-1,3-β-glucanase from Cellulosimicrobium cellulans. J Biol Macromol 8(3):60–63

    CAS  Google Scholar 

  • Teegardin KA, James S, Barabote RD (2017) Bioinformatic analysis of glycoside hydrolases in the proteomes of mesophilic and thermophilic Actinobacteria. MOJ Proteom Bioinformatics 5(3):75–81

    Google Scholar 

  • Temuujina U, Chia W, Chang YB, Honga S (2012) Identification and biochemical characterization of SCO3487 from Streptomyces coelicolorA3 (2), an exo- and endo-type–agarase producing neoagarobiose. J Bacteriol 194(1):142–149

    Article  Google Scholar 

  • Tomme P, Diane P, Emily DA, Robert AC, Miller JR, Antony R, Warren J, Kilburn DG (1995) Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J Bacteriol 177(15):4356–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomotsune K, Kasuga K, Tsuchida M, Shimura Y, Kobayashi M, Agematsu H, Ikeda H, Ishikawa J, Kojima I (2014) Cloning and sequence analysis of the cellulase genes isolated from two cellulolytic Streptomycetes and their heterologous expression in Streptomyces lividans. Int J Soc Mater Eng Resour 20(2):213–218

    Article  CAS  Google Scholar 

  • von Wettstein DV, Mikhaylenko G, Froseth JA, Kannangara CG (2000) Improved barley broiler feed with transgenic malt containing heat-stable (1,3-1,4)-β-glucanase. Proc Natl Acad Sci U S A 97(25):13512–13517

    Article  Google Scholar 

  • Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, Ståhlberg J (2013) Rational design, synthesis, evaluation and enzyme–substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J 280(1):184–198

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F, Ying X (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:445–451

    Article  Google Scholar 

  • Zanghellini A (2014) De novo computational enzyme design. Curr Opin Biotechnol 29:132–138

    Article  CAS  PubMed  Google Scholar 

  • Zaparucha A, de Berardinis V, Vaxelaire-Vergne C (2018) Genome mining for enzyme discovery. In: Modern biocatalysis: advances towards synthetic biological systems. pp. 1-27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edison, L.K., Nandu, T.G., Pradeep, N.S. (2022). Structural Characterization of Beta-Glucanase from Actinobacteria. In: Pradeep, N., Edison, L.K. (eds) Microbial Beta Glucanases. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-6466-4_9

Download citation

Publish with us

Policies and ethics