Skip to main content

Electron Transport in Graphene Nanoribbons

  • Conference paper
  • First Online:
From Kinetic Theory to Turbulence Modeling (INdAM 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 51))

  • 308 Accesses

Abstract

Lately, graphene has attracted the attention of several scientists because of its interesting properties. In particular, charge transport in graphene nanoribbons has peculiar effects which reveal very challenging, especially for future generations of electron devices. The possibility to replace traditional semiconductor materials with graphene in the active area of electron devices constitutes the ultimate miniaturization since graphene has the width of a single atom. Here we present an analysis of charge transport in graphene nanoribbons in the framework of semiclassical transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The spin degeneracy is not included; otherwise an additional factor 2 must be added which is irrelevant to compare the mobilities.

References

  1. Camiola, V.D., Mascali, G., Romano, V.: Charge Transport in Low Dimensional Semiconductor Structures. Mathematics in Industry, vol. 31. Springer International Publishing, Berlin (2020)

    Google Scholar 

  2. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89

    Article  Google Scholar 

  3. Nastasi, G., Romano, V.: A full coupled drift-diffusion-Poisson simulation of a GFET. Commun. Nonlinear Sci. Numer. Simul. 87, 105300 (2020). https://doi.org/10.1016/j.cnsns.2020.105300

    Article  MathSciNet  MATH  Google Scholar 

  4. Nastasi, G., Romano, V.: An efficient GFET structure. IEEE Trans. Electron. Devices. 68, 4729–4734 (2021). https://doi.org/10.1109/TED.2021.3096492

    Article  Google Scholar 

  5. Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805

    Article  Google Scholar 

  6. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  Google Scholar 

  7. Bresciani, M., Palestri, P., Esseni, D. Selmi, L.: Simple and efficient modeling of the E-k relationship and low-field mobility in Graphene Nano-Ribbons. Solid-State Electron. 54,1015–1021 (2010). https://doi.org/10.1016/j.sse.2010.04.038

    Article  Google Scholar 

  8. Majorana, A., Nastasi, G., Romano, V.: Simulation of Bipolar charge transport in graphene by using a discontinuous Galerkin method. Commun. Comput. Phys. 26, 114–134 (2019). https://doi.org/10.4208/cicp.OA-2018-0052

    Article  MathSciNet  MATH  Google Scholar 

  9. Coco, M., Nastasi, G.: Simulation of bipolar charge transport in graphene on h-BN. COMPEL 39(2), 449–465 (2020). https://doi.org/10.1108/COMPEL-08-2019-0311

    Article  Google Scholar 

  10. Borysenko, K.M., Mullen, J.T., Barry, E.A., Paul, S., Semenov, Y.G., Zavada, J.M., Buongiorno Nardelli, M., Kim, K.W.: First-principles analysis of electron-phonon interactions in graphene, Phys. Rev. B. 11, 121412(R) (2010). https://doi.org/10.1103/PhysRevB.81.121412

  11. Li, X., Barry, E.A., Zavada, J.M., Buongiorno Nardelli, M., Kim, K.W.: Surface polar phonon dominated electron transport in graphene. Appl. Phys. Lett. 97, 232105 (2010). https://doi.org/10.1063/1.3525606

    Article  Google Scholar 

  12. Nastasi, G., Romano, V.: Improved mobility models for charge transport in graphene. Commun. Appl. Ind. Math. 10, 41–52 (2019). https://doi.org/10.1515/caim-2019-0011

    MathSciNet  MATH  Google Scholar 

  13. Dugaev, V.K., Katsnelson, M.I.: Edge scattering of electrons in graphene: Boltzmann equation approach to the transport in graphene nanoribbons and nanodisks. Phys. Rev. B. 88, 235432 (2013). https://doi.org/10.1103/PhysRevB.88.235432

    Article  Google Scholar 

  14. Camiola, V.D., Nastasi, G., Romano, V.: Direct simulation of charge transport in graphene nanoribbons. Comm. Comp. Physics. 31(2), 449–494 (2022). https://doi.org/10.4208/cicp.OA-2021-0032

    Article  MathSciNet  MATH  Google Scholar 

  15. Coco, M., Majorana, A., Romano, V.: Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate. Ricerche Mat. 66, 201–220 (2017). https://doi.org/10.1007/s11587-016-0298-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Jacoboni, C.: Theory of Electron Transport in Semiconductors, 1st edn. Springer, Berlin (2010)

    Book  Google Scholar 

  17. Majorana, A., Mascali, G., Romano, V.: Charge transport and mobility in monolayer graphene. J. Math. Industry. 7, 4 (2016). https://doi.org/10.1186/s13362-016-0027-3

    Article  MathSciNet  Google Scholar 

  18. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001). https://doi.org/10.1023/A:1012873910884

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W.: A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices. Comput. Methods Appl. Mech. Engrg. 198(37–40), 3130–3150 (2009). https://doi.org/10.1007/s10825-008-0247-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, Y. Gamba, I.M., Majorana, A., Shu, C.-W.: A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations. Boletin de la Sociedad Espanola de Matematica Aplicada. 54, 47–64 (2011). https://doi.org/10.1007/BF03322587

    MathSciNet  MATH  Google Scholar 

  21. Coco, M., Romano, V.: Simulation of electron-phonon coupling and heating dynamics in suspended monolayer graphene including all the phonon branches. J. Heat Transfer. 140, 092404 (2018). https://doi.org/10.1115/1.4040082

    Article  Google Scholar 

  22. Mascali, G.: A hydrodynamic model for silicon semiconductors including crystal heating. Eur. J. Appl. Math. 26, 447–496 (2015). https://doi.org/10.1017/S0956792515000157

    Article  MathSciNet  MATH  Google Scholar 

  23. Mascali, G., Romano, V.: Charge transport in graphene including thermal effects. SIAM J. Appl. Math. 77, 593–613 (2017). https://doi.org/10.1137/15M1052573

    Article  MathSciNet  MATH  Google Scholar 

  24. Mascali, G., Romano, V.: Exploitation of the maximum entropy principle in mathematical modeling of charge transport in semiconductors. Entropy. 19, 36 (2017). https://doi.org/10.3390/e19010036

    Article  Google Scholar 

  25. Luca, L., Romano, V.: Quantum corrected hydrodynamic models for charge transport in graphene. Ann. Phys. 406, 30–53 (2019). https://doi.org/10.1016/j.aop.2019.03.018

    Article  MathSciNet  MATH  Google Scholar 

  26. Barletti, L., Cintolesi, C.: Derivation of Isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics. J. Stat. Phys. 148, 353–386 (2012). https://doi.org/10.1007/s10955-012-0535-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Camiola, V.D., Luca, L., Romano, V.: Equilibrium Wigner function for Fermions and Bosons in the case of a general energy dispersion relation. Entropy 22, 1023 (2020). https://doi.org/10.3390/e22091023

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from INdAM (GNFM) and from Università degli Studi di Catania, Piano della Ricerca 2020/2022 Linea di intervento 2 “QICT.” G. Nastasi acknowledges the financial support from Progetto Giovani GNFM 2020 “Trasporto di cariche e fononi in strutture a bassa dimensione.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Nastasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nastasi, G., Romano, V. (2023). Electron Transport in Graphene Nanoribbons. In: Barbante, P., Belgiorno, F.D., Lorenzani, S., Valdettaro, L. (eds) From Kinetic Theory to Turbulence Modeling. INdAM 2021. Springer INdAM Series, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-19-6462-6_16

Download citation

Publish with us

Policies and ethics