Skip to main content
Log in

Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The aim of this work is to simulate the charge transport in a monolayer graphene on a substrate. This requires the inclusion of the scatterings of the charge carriers with the impurities and the phonons of the substrate, besides the interaction mechanisms already present in the graphene layer. As physical model, the semiclassical Boltzmann equation will be assumed. Two approaches will be used for the simulations: a numerical scheme based on the Discontinuous Galerkin method for finding deterministic (non stochastic) solutions and a new Direct Monte Carlo Simulation formulated in Romano et al. (J Comput Phys 302:267–284, 2015) in order to deal in the appropriate way with the Pauli exclusion principle for degenerate Fermi gases. A cross validation of the deterministic and stochastic solutions shows the robustness and accuracy of both the approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We expect an exponential decay of the distribution function as \(|\mathbf {k}| \mapsto +\infty \). This is proved, under suitable conditions, for the classical Boltzmann equation of rarefied monatomic gases. In our simulations, we check if, after each time step, the values of f at the boundary of the domain \(\Omega \) are sufficiently low; otherwise, we enlarge the domain \(\Omega \) and repeat the integration starting from the initial time.

References

  1. Romano, V., Majorana, A., Coco, M.: DSMC method consistent with Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene. J. Comput. Phys. 302, 267–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kané, G., Lazzeri, M., Mauri, F.: High-field transport in graphene: the impact of Zener tunneling, J. Phys.: Condens. Matter. 27(164205), 11 (2015)

  3. Hirai, H., Tsuchiya, H., Kamakura, Y., Mori, N., Ogawa, M.: Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703 (2014)

    Article  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, Y., Gamba, I.M., Majorana, A.: C.-W Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices. Comput. Methods Appl. Mech. Eng. 198, 3130–3150 (2009)

    Article  MATH  Google Scholar 

  6. Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W.: A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations. Bol. de la Soc. Esp. de Mat. Apl. 56, 47–64 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Zamponi, N., Barletti, L.: Quantum electronic transport in graphene: a kinetic and fluid-dynamical approach. Math. Methods Appl. Sci. 34, 807–818 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Camiola, V.D., Romano, V.: Hydrodynamical model for charge transport in graphene. J. Stat. Phys. 157, 11141137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mascali, G., Romano, V.: A comprehensive hydrodynamical model for charge transport in graphene, 978-1-4799-5433-9/14/$31.00, IEEE, IWCE-2014 Paris (2014)

  10. Mascali, G., Romano, V.: Charge Transport in Graphene Including Thermal Effects (2015) (preprint)

  11. Coco, M., Majorana, A., Mascali G., Romano, V.: Comparing kinetic and hydrodynamical models for electron transport in monolayer graphene. In: Schrefler, B., Onate, E., Papadrakakis, M. (eds.) VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2015, Venezia, 18-20 May 2015, pp. 1003–1014

  12. Hwang, E.H., Adam, S., Das, S.: Sarma, carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007)

    Article  Google Scholar 

  13. Hwang, E.H., Das, S.: Sarma, dielectric function, screening, and plasmon in two-dimensional graphene. J. Phys. Rev. B 75, 205418 (2007)

    Article  Google Scholar 

  14. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  15. Fang, T., Konar, A., Xing, H., Jena, D.: High-field transport in two-dimensional graphene. Phys. Rev. B 84, 125450 (2011)

    Article  Google Scholar 

  16. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000)

  17. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics No, vol. 773. Springer, Berlin (2009)

  18. Majorana, A., Marano, S.: Space homogeneous solutions to the Cauchy problem for semiconductor Boltzmann equations. SIAM J. Math. Anal. 28, 1294–1308 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Majorana, A., Marano, S.: On the Cauchy problem for spatially homogeneous semiconductor Boltzmann equations: existence and uniqueness. Annali di matematica 184, 275–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comp. Phys. 77, 439–471 (1988)

    Article  MATH  Google Scholar 

  21. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  22. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24, 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  24. Lugli, P., Ferry, D.K.: Degeneracy in the Ensemble Monte Carlo Method for High-Field Transport in Semiconductors, IEEE Trans. on Elect. Devices ED-32 11, pp. 2431–2437 (1985)

  25. Tadyszak, P., Danneville, F., Cappy, A., Reggiani, L., Varani, L., Rota, L.: Monte Carlo calculations of hot-carrier noise under degenerate conditions. Appl. Phys. Lett. 69(10), 1450–1452 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Romano.

Additional information

This work has been partially supported by the University of Catania, project F. I. R. Charge transport in graphene and low dimensional systems, and by INDAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coco, M., Majorana, A. & Romano, V. Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate. Ricerche mat 66, 201–220 (2017). https://doi.org/10.1007/s11587-016-0298-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0298-4

Keywords

Mathematics Subject Classification

Navigation