Skip to main content

Phenolic Biosynthesis and Metabolic Pathways to Alleviate Stresses in Plants

  • Chapter
  • First Online:
Plant Phenolics in Abiotic Stress Management

Abstract

Phenolics are the plant secondary metabolites which play salient physicochemical roles entire lifespan. Phenolics are produced under various biotic and abiotic stresses and play key roles to alleviate stresses regulate hormonal regulation, improving photosynthetic activity, nutrient mineralization, metal-chelating property, antioxidative capacity, etc. Phenolic compounds are mainly biosynthesized by shikimic acid pathway in advanced plants and shikimate is the key central metabolite for synthesis of complex phenolics. Phenylalanine ammonia lyase is a prime enzyme for phenylpropanoid biosynthetic pathway, connecting primary metabolism to secondary metabolism. It has been seen that during harsh environmental conditions, phenolic compounds are synthesized and accumulated in host plant to emerge from that stress. This chapter furnishes knowledge about the biosynthetic pathways of different phenolic compounds and newly illuminated steps in the biosynthesis to mitigate various biotic and abiotic stresses, many of which allocate precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akashi T (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137(3):882–891. https://doi.org/10.1104/pp.104.056747

    Article  CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  • Amthor JS (2003) Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot 91(6):673–695. https://doi.org/10.1093/aob/mcg073

    Article  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01473

  • Berner M, Krug D, Bihlmaier C, Vente A, Muller R, Bechthold A (2006) Genes and enzymes involved in caffeic acid biosynthesis in the Actinomycete Saccharothrix espanaensis. J Bacteriol 188(7):2666–2673

    Article  CAS  Google Scholar 

  • Bi B, Tang J, Han S, Guo J, Miao Y (2017) Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. BMC Plant Biol 17(1):99

    Article  Google Scholar 

  • Bogs J (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139(2):652–663. https://doi.org/10.1104/pp.105.064238

    Article  CAS  Google Scholar 

  • Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9(3):165–191. https://doi.org/10.1631/jzus.b0710640

    Article  CAS  Google Scholar 

  • Castrillón-Arbeláez PA, Délano Frier JP (2016) Secondary metabolism in Amaranthus spp.—a genomic approach to understand its diversity and responsiveness to stress in marginally studied crops with high agronomic potential. In: Abiotic and biotic stress in plants—recent advances and future perspectives. InTechOpen, London. https://doi.org/10.5772/61820

    Chapter  Google Scholar 

  • Caverzan A, Casassola A, Patussi BS (2016) Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Rijeka. https://doi.org/10.5772/61368

    Chapter  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4(6):493–496. https://doi.org/10.4161/psb.4.6.8392

    Article  CAS  Google Scholar 

  • Chen CY, Chen KC, Yang TY, Liu HC, Hsu SL (2013) Gallic acid induces a reactive oxygen species-provoked c-Jun NH2-terminal kinase-dependent apoptosis in lung fibroblasts. Evid Based Complement Alternat Med 1–12. https://doi.org/10.1155/2013/613950

  • Cheng AX, Han XJ, Wu YF, Lou HX (2014) The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int J Mol Sci 15(1):1080–1095. https://doi.org/10.3390/ijms15011080

    Article  CAS  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177(3):143–155. https://doi.org/10.1016/j.plantsci.2009.05.012

    Article  CAS  Google Scholar 

  • Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34(12):1391–1421

    Article  CAS  Google Scholar 

  • De Souza AX, Sant’Anna CMR (2008) 5-Enolpyruvylshikimate-3-phosphate synthase: determination of the protonation state of active site residues by the semiempirical method. Bioorg Chem 36(3):113–120. https://doi.org/10.1016/j.bioorg.2007.12.007

    Article  CAS  Google Scholar 

  • Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes-Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M (2014) Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 34(3):273–282

    Article  CAS  Google Scholar 

  • Deluc LG, Decendit A, Papastamoulis Y, Mérillon JM, Cushman JC, Cramer GR (2011) Water deficit increases stilbene metabolism in cabernet sauvignon berries. J Agric Food Chem 59(1):289–297. https://doi.org/10.1021/jf1024888

    Article  CAS  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156. https://doi.org/10.1199/tab.0156

    Article  Google Scholar 

  • Deng N, Liu C, Chang E, Ji F, Yao X, Yue J, Bartish IV, Chen L, Jiang Z, Shi S (2017) High temperature and UV-C treatments affect stilbenoid accumulation and related gene expression levels in Gnetum parvifolium. Electron J Biotechnol 25:43–49

    Article  Google Scholar 

  • Donaldson LA (2002) Abnormal lignin distribution in wood from severely drought stressed Pinus Radiata trees. IAWA J 23(2):161–178

    Article  Google Scholar 

  • Duan C, Yu J, Bai J, Zhu Z, Wang X (2014) Induced defense responses in rice plants against small brown planthopper infestation. Crop J 2(1):55–62. https://doi.org/10.1016/j.cj.2013.12.001

    Article  Google Scholar 

  • Duan D, Halter D, Baltenweck R, Tisch C, Troster V, Kortekamp A, Hugueney P, Nick P (2015) Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot 66(11):3243–3257. https://doi.org/10.1093/jxb/erv137

    Article  CAS  Google Scholar 

  • Esmaeilzadeh Bahabadi S, Sharifi M, Ahmadian CN, Murata J, Satake H (2014) Significant enhancement of lignan accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol Planta 36(12):3325–3331

    Article  CAS  Google Scholar 

  • Francenia Santos-Sánchez N, Salas-Coronado R, Hernández-Carlos B, Villanueva-Cañongo C (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. In: Plant physiological aspects of phenolic compounds. InTech, London. https://doi.org/10.5772/intechopen.83815

    Chapter  Google Scholar 

  • Gao S, Xu X, Zeng W, Xu S, Lyv Y, Feng Y, Kai G, Zhou J, Chen J (2020) Efficient biosynthesis of (2S)-eriodictyol from (2S)-naringenin in Saccharomyces cerevisiae through a combination of promoter adjustment and directed evolution. ACS Synth Biol. https://doi.org/10.1021/acssynbio.0c00346

  • García-Calderón M, Pérez-Delgado CM, Palove-Balang P, Betti M, Márquez AJ (2020) Flavonoids and isoflavonoids biosynthesis in the model legume Lotus japonicus; connections to nitrogen metabolism and photorespiration. Plants 9(6):774. https://doi.org/10.3390/plants9060774

    Article  CAS  Google Scholar 

  • Giacomini E, Rupiani S, Guidotti L, Recanatini M, Roberti M (2016) The use of stilbene scaffold in medicinal chemistry and multi-target drug design. Curr Med Chem 23(23):2439–2489

    Article  CAS  Google Scholar 

  • Gulcin Ä° (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. https://doi.org/10.1007/s00204-020-02689-3

  • Gull A, Ahmad LA, Islam WN (2019) Biotic and abiotic stresses in plants. In: Abiotic and biotic stress in plants. InTech, London. https://doi.org/10.5772/intechopen.85832

    Chapter  Google Scholar 

  • Gutierrez-Gonzalez JJ, Guttikonda SK, Tran LSP, Aldrich DL, Zhong R, Yu O, Nguyen HT, Sleper DA (2010) Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant Cell Physiol 51(6):936–948. https://doi.org/10.1093/pcp/pcq065

    Article  CAS  Google Scholar 

  • Hammerbacher A, Kandasamy D, Ullah C, Schmidt A, Wright LP, Gershenzon J (2019) Flavanone-3-hydroxylase plays an important role in the biosynthesis of spruce phenolic defenses against bark beetles and their fungal associates. Front Plant Sci 10:208. https://doi.org/10.3389/fpls.2019.00208

    Article  Google Scholar 

  • Hatfield R (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126(4):1351–1357

    Article  CAS  Google Scholar 

  • Houde V, Grenier D, Chandad F (2006) Protective effects of grape seed proanthocyanidins against oxidative stress induced by lipopolysaccharides of periodontopathogens. J Periodontol 77(8):1371–1379. https://doi.org/10.1902/jop.2006.050419

    Article  CAS  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153(4):1526–1538. https://doi.org/10.1104/pp.110.157370

    Article  CAS  Google Scholar 

  • Huang L, Zhang S, Singer SD, Yin X, Yang J, Wang Y, Wang X (2016) Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea. Front Plant Sci 7:1379. https://doi.org/10.3389/fpls.2016.01379

    Article  Google Scholar 

  • Huang Q, Liu X, Zhao G, Hu T, Wang Y (2017) Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim Nutr. https://doi.org/10.1016/j.aninu.2017.09.004

  • Huccetogullari D, Luo ZW, Lee SY (2019) Metabolic engineering of microorganisms for production of aromatic compounds. Microb Cell Factories 18(1). https://doi.org/10.1186/s12934-019-1090-4

  • Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52(1). https://doi.org/10.1186/s40659-019-0246-3

  • Jamalian S, Gholami M, Esna-Ashari M (2013) Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theor Exp Plant Physiol 25(4):291–299

    Google Scholar 

  • Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clement C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, Batiha GE, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM (2021) Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep. https://doi.org/10.1039/d0np00030b

  • Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol:1–9. https://doi.org/10.1155/2014/952943

  • Kang JH, McRoberts J, Shi F, Moreno JE, Jones AD, Howe GA (2014) The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiol 164(3):1161–1174. https://doi.org/10.1104/pp.113.233395

    Article  CAS  Google Scholar 

  • Khan MK, Zill-E-Huma DO (2014) A comprehensive review on flavanones, the major citrus polyphenols. J Food Comp Anal 33(1):85–104. https://doi.org/10.1016/j.jfca.2013.11.004

    Article  CAS  Google Scholar 

  • Khan A, Nazar S, Lang I, Nawaz H, Hussain MA (2017) Effect of ellagic acid on growth and physiology of canola (Brassica napus L.) under saline conditions. J Plant Int 12(1):520–525. https://doi.org/10.1080/17429145.2017.1400122

    Article  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1361779. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  Google Scholar 

  • Kısa S, Kayır O, SaÄŸlam N, Åžahin S, Öztürk L, Elmasta M (2019) Changes of phenolic compounds in tomato associated with the heavy metal stress. J Nat Appl Sci 2(1):35–43

    Google Scholar 

  • Kisiel A, KÄ™pczyÅ„ska E (2016) Medicago truncatula Gaertn as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Planta 243(5):1169–1189. https://doi.org/10.1007/s00425-016-2469-7

    Article  CAS  Google Scholar 

  • Klein A, Keyster M, Ludidi N (2015) Response of soybean nodules to exogenously applied caffeic acid during NaCl-induced salinity. S Afr J Bot 96:13–18

    Article  CAS  Google Scholar 

  • Kong JQ (2015) Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 5(77):62587–62603

    Article  CAS  Google Scholar 

  • Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep 24:e00370. https://doi.org/10.1016/j.btre.2019.e00370

    Article  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013:1–16. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93

    Article  CAS  Google Scholar 

  • Li HH, Inove M, Nishimura H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1175–1787

    Article  Google Scholar 

  • Li DM, Nie YX, Zhang J, Yin JS, Li Q, Wang XJ, Bai JG (2013) Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings. Biol Plant 57(4):711–717

    Article  CAS  Google Scholar 

  • Li N, Zhao M, Liu T, Dong L, Cheng Q, Wu J, Wang L, Chen X, Zhang C, Lu W, Xu P, Zhang S (2017a) A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01185

  • Li Y, Liu X, Cai X, Shan X, Gao R, Yang S, Gao X (2017b) Dihydroflavonol 4-reductase genes from Freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00428

  • Li X, Lv X, Wang X, Wang L, Zhang M, Ren M (2018) Effects of abiotic stress on anthocyanin accumulation and grain weight in purple wheat. Crop Pasture Sci 69(12):1208. https://doi.org/10.1071/CP18341

    Article  CAS  Google Scholar 

  • Liang J, He J (2018) Protective role of anthocyanins in plants under low nitrogen stress. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2018.03.087

  • Liu CW, Murray J (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants 5(3):33. https://doi.org/10.3390/plants5030033

    Article  CAS  Google Scholar 

  • Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A (2018) Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: a review. Front Chem 6:52. https://doi.org/10.3389/fchem.2018.00052

    Article  CAS  Google Scholar 

  • Louie GV, Bowman ME, Moffitt MC, Baiga TJ, Moore BS, Noel JP (2006) Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chem Biol 13(12):1327–1338

    Article  CAS  Google Scholar 

  • Luziatelli F, Brunetti L, Ficca AG, Ruzzi M (2019) Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00279

  • Ma QH, Liu YC (2014) TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Mol Biol Rep 33(1):143–152

    Article  Google Scholar 

  • Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00178

  • Mamaní A, Filippone MP, Grellet C, Welin B, Castagnaro AP, Ricci JCD (2012) Pathogen-induced accumulation of an ellagitannin elicits plant defense response. Mol Plant Microbe Interact 25(11):1430–1439. https://doi.org/10.1094/mpmi-12-11-0306

    Article  Google Scholar 

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00838

  • Mérillon JM, Ramawat KG (eds) (2017) Fungal metabolites. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4

    Book  Google Scholar 

  • Metsämuuronen S, Sirén H (2019) Bioactive phenolic compounds, metabolism and properties: a review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem Rev 18:623–664

    Article  Google Scholar 

  • Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh A, Vandoorne B, Lutts S, Ahmed HB (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. OMICS J Integr Biol 20(3):180–190

    Article  CAS  Google Scholar 

  • Mishra B, Sangwan NS (2019) Amelioration of cadmium stress in Withania somnifera by ROS management: active participation of primary and secondary metabolism. Plant Growth Regul 87:403–412

    Article  CAS  Google Scholar 

  • Mittasch J, Böttcher C, Frolova N, Bönn M, Milkowski C (2014) Identification of UGT84A13 as a candidate enzyme for the first committed step of gallotannin biosynthesis in pedunculate oak (Quercus robur). Phytochemistry 99:44–51. https://doi.org/10.1016/j.phytochem.2013.11.023

    Article  CAS  Google Scholar 

  • Modarresi M, Chahardoli A, Karimi N, Chahardoli S (2020) Variations of glaucine, quercetin and kaempferol contents in Nigella arvensis against Al2O3, NiO, and TiO2 nanoparticles. Heliyon 6(6):4265. https://doi.org/10.1016/j.heliyon.2020.e04265

    Article  Google Scholar 

  • Moglia A, Lanteri S, Comino C, Acquadro A, de Vos R, Beekwilder J (2008) Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J Agric Food Chem 56(18):8641–8649

    Article  CAS  Google Scholar 

  • Muir RM, Ibáñez AM, Uratsu SL, Ingham ES, Leslie CA, McGranahan GH, Dandekar AM (2011) Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Mol Biol 75(6):555–565. https://doi.org/10.1007/s11103-011-9739-3

    Article  CAS  Google Scholar 

  • Naing A, Lee DB, Ai TN, Lim KB, Kim CK (2018) Enhancement of low pH stress tolerance in anthocyanin-enriched transgenic petunia overexpressing RsMYB1 gene. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01124

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77(3):367–379. https://doi.org/10.1111/tpj.12388

    Article  CAS  Google Scholar 

  • Ng TLM, Karim R, Tan YS, The HF, Danial AD, Ho LS, Harikrishna JA (2016) Amino acid and secondary metabolite production in embryogenic and non-embryogenic callus of finger root ginger (Boesenbergia rotunda). PLoS One 11(6):e0156714. https://doi.org/10.1371/journal.pone.0156714

    Article  CAS  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Long 2(5):270–278. https://doi.org/10.4161/oxim.2.5.9498

    Article  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00537

  • Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J (2017) Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot 68(13):3287–3301

    Article  CAS  Google Scholar 

  • Parage C, Tavares R, Rety S, Baltenweck-Guyot R, Poutaraud A, Renault L, Gabriel MS, Aubourg Hugueney P (2012) Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol 160(3):1407–1419. https://doi.org/10.1104/Pp.112.202705

    Article  CAS  Google Scholar 

  • Park HL, Yoo Y, Bhoo SH, Lee T-H, Lee S-W, Cho M-H (2020) Two chalcone synthase isozymes participate redundantly in UV-induced sakuranetin synthesis in rice. Int J Mol Sci 21(11):3777. https://doi.org/10.3390/ijms21113777

    Article  CAS  Google Scholar 

  • Parvez MM, Tomita-Yokotani K, Fujii Y, Konishi T, Iwashina T (2004) Effects of quercetin and its derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochem Syst Ecol 32:631–635

    Article  CAS  Google Scholar 

  • Pezet R, Gindro K, Viret O, Spring JL (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65(6):297–303. https://doi.org/10.1016/j.pmpp.2005.03.002

    Article  CAS  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108(7):1225–1233. https://doi.org/10.1093/aob/mcr234

    Article  CAS  Google Scholar 

  • Rao MD, Xu Y, Huang Y, Tang X, Deng X, Xu Q (2019) Ectopic expression of citrus UDP-glucosyl transferase gene enhances anthocyanin and proanthocyanidins contents and confers high light tolerance in Arabidopsis. BMC Plant Biol 19(1):603. https://doi.org/10.1186/s12870-019-2212-1

    Article  CAS  Google Scholar 

  • Riaz U, Kharal MA, Murtaza G, Zaman Q, Javaid S, Malik HA, Aziz H, Abbas Z (2019) Prospective roles and mechanisms of caffeic acid in counter plant stress: a mini review. Pak J Agric Res 32(1):8–19

    Google Scholar 

  • Ruegger M, Meyer K, Cusumano JC, Chapple C (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol 119(1):101–110

    Article  CAS  Google Scholar 

  • Saleem M, Fariduddin Q, Janda T (2020) Multifaceted role of salicylic acid in combating cold stress in plants: a review. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10152-x

  • Sandmann G, Hilgenberg W (1982) Biosynthetic pathway of protocatechuic acid in Phycomyces blakesleeanus. Z Pflanzenphysiol 105(4):379–381. https://doi.org/10.1016/s0044-328x(82)80035-4

    Article  CAS  Google Scholar 

  • Santos EL, Maia B, Ferriani AP, Teixeira SD (2017) Flavonoids: classification, biosynthesis and chemical ecology. In: Flavonoids—from biosynthesis to human health. InTechOpen, London. https://doi.org/10.5772/67861

    Chapter  Google Scholar 

  • Seguel A, Jelenska J, Herrera-Vásquez A, Joyce MB, Gagesch KR, Shakoor N, Jiang SC, Fonseca A, Wildermuth MC, Greenberg JT, Holuigue L (2018) Prohibitin3 forms complexes with isochorismate synthase1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant Physiol 176(3):2515–2531. https://doi.org/10.1104/pp.17.00941

    Article  CAS  Google Scholar 

  • Shahidi F, Yeo J (2016) Insoluble-bound phenolics in food. Molecules 21(9):1216. https://doi.org/10.3390/molecules21091216

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019a) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomol Ther 9(7):285. https://doi.org/10.3390/biom9070285

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019b) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  Google Scholar 

  • Shuab R, Lone R, Koul KK (2016) Cinnamate and cinnamate derivatives in plants. Acta Physiol Plant 38:64. https://doi.org/10.1007/s11738-016-2076-z

    Article  CAS  Google Scholar 

  • Singh A, Gupta R, Pandey R (2017) Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiol Mol Biol Plants 23(2):301–309. https://doi.org/10.1007/s12298-017-0430-2

    Article  CAS  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2016) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol. https://doi.org/10.1111/bph.13630

  • Sobolev VS (2008) Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species. J Agric Food Chem 56(6):1949–1954. https://doi.org/10.1021/jf703595w

    Article  CAS  Google Scholar 

  • Song ZP, Luo Y, Wang WF, Fan NB, Wang DB, Yang C, Jia HF (2020) NtMYB12 positively regulates flavonol biosynthesis and enhances tolerance to low Pi stress in Nicotiana tabacum. Front Plant Sci 10:1683. https://doi.org/10.3389/fpls.2019.01683

    Article  Google Scholar 

  • Sonnante G, D’Amore R, Blanco E, Pierri CL, De Palma M, Luo J, Tucci M, Martin C (2010) Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol 153(3):1224–1238

    Article  CAS  Google Scholar 

  • Springob K, Samappito S, Jindaprasert A, Schmidt J, Page JE, De-Eknamkul W, Kutchan TM (2006) A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones. FEBS J 274(2):406–417. https://doi.org/10.1111/j.1742-4658.2006.05588.x

    Article  CAS  Google Scholar 

  • Stuper-Szablewska K, Kurasiak-Popowska D, NawracaÅ‚a J, Perkowski J (2019) Quantitative profile of phenolic acids and antioxidant activity of wheat grain exposed to stress. Eur Food Res Technol. https://doi.org/10.1007/s00217-019-03262-8

  • Tak Y, Kumar M (2020) Phenolics: a key defensive secondary metabolite to counter biotic stress. In: Lone R (ed) Plant phenolics in sustainable agriculture. Springer, Singapore, pp 309–330

    Chapter  Google Scholar 

  • Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, Weng JK (2019) PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in arabidopsis. Mol Plant 12:1577–1586

    Article  CAS  Google Scholar 

  • Tripathi D, Raikhy G, Kumar D (2019) Chemical elicitors of systemic acquired resistance—salicylic acid and its functional analogs. Curr Plant Biol. https://doi.org/10.1016/j.cpb.2019.03.002

  • Ullah C, Unsicker SB, Fellenberg C, Constabel CP, Schmidt A, Gershenzon J, Hammerbacher A (2017) Flavan-3-ols are an effective chemical defense against rust infection. Plant Physiol 175:1560–1578. https://doi.org/10.1104/pp.17.00842

    Article  CAS  Google Scholar 

  • Vadivel AK, Renaud J, Kagale S, Dhaubhadel S (2019) GmMYB176 regulates multiple steps in isoflavonoid biosynthesis in soybean. Front Plant Sci 10:562. https://doi.org/10.3389/fpls.2019.00562

    Article  Google Scholar 

  • Valifard M, Mohsenzadeh S, Niazi A, Moghadam A (2015) Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in Salvia species. Aust J Crop Sci 9(7):656–665

    CAS  Google Scholar 

  • Verma S, Gazara RK, Verma PK (2017) Transcription factor repertoire of necrotrophic fungal phytopathogen Ascochyta rabiei: predominance of MYB transcription factors as potential regulators of secretome. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01037

  • Wang Y, Yi H, Wang M, Yu O, Jez JM (2011) Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-coa ligase::stilbene synthase. J Am Chem Soc 133(51):20684–20687. https://doi.org/10.1021/ja2085993

    Article  CAS  Google Scholar 

  • Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00220

  • Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol 9. https://doi.org/10.3389/fphys.2018.00364

  • Wojciechowska E, Weinert CH, Egert B, Trierweiler B, Schmidt-Heydt M, Horneburg B, Graeff-Hönninger S, Kulling SE, Geisen R (2014) Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. Eur J Plant Pathol 139(4):735–747

    Article  CAS  Google Scholar 

  • Xiao Y, Feng J, Li Q, Zhou Y, Bu Q, Zhou J, Tan X, Yang Y, Zhang L, Chen W (2020) IiWRKY34 positively regulates yield, lignan biosynthesis and stress tolerance in Isatis indigotica. Acta Pharm Sin. https://doi.org/10.1016/j.apsb.2019.12.020

  • Xie S, Lei Y, Chen H, Li J, Chen H, Zhang Z (2020) R2R3-MYB transcription factors regulate anthocyanin biosynthesis in grapevine vegetative tissues. Front Plant Sci 11:527. https://doi.org/10.3389/fpls.2020.00527

    Article  Google Scholar 

  • Xu Z, Zhou J, Ren T, Du HL, Han L, Yiqiang Z, Cheng S (2020) Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetum. Plant Biol 22:13128. https://doi.org/10.1111/plb.13128

    Article  CAS  Google Scholar 

  • Xuan TD, Khang DT (2018) Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules 23(620). https://doi.org/10.3390/molecules23030620

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M (2017) Improvement of cold stress resistance via free radical scavenging ability and promoted water status and photosynthetic capacity of gallic acid in soybean leaves. J Soil Sci Plant Nutr. https://doi.org/10.4067/s0718-95162017005000027

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Turkan I (2020) Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris. Front Plant Sci 11:682. https://doi.org/10.3389/fpls.2020.00682

    Article  Google Scholar 

  • Yu A, Zhao J, Wang Z, Cheng K, Zhang P, Tian G, Liu X, Guo E, Du Y, Wang Y (2020) Transcriptome and metabolite analysis reveal the drought tolerance of foxtail millet significantly correlated with phenylpropanoids-related pathways during germination process under PEG stress. BMC Plant Biol 20(1):274

    Article  CAS  Google Scholar 

  • Zeraik ML, Petrônio MS, Coelho D, Regasini LO, Silva DHS, da Fonseca LM, Machado SAS, Bolzani VS, Ximenes VF (2014) Improvement of pro-oxidant capacity of protocatechuic acid by esterification. PLoS One 9(10):e110277. https://doi.org/10.1371/journal.pone.0110277

    Article  CAS  Google Scholar 

  • Zhang J, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144(2):741–751. https://doi.org/10.1104/Pp.106.095018

    Article  CAS  Google Scholar 

  • Zhang C, Wang X, Zhang F, Dong L, Wu J, Cheng Q, Qi D, Yan X, Jiang L, Fan S, Li N, Li D, Xu P, Zhang S (2017) Phenylalanine ammonia-lyase 2.1 contributes to the soybean response towards Phytophthora sojae infection. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-07832-2

  • Zhang Z, Wang P, Luo X, Yang C, Tang Y, Wang Z, Hu G, Ge H, Xia G, Wu J (2019) Cotton plant defence against a fungal pathogen is enhanced by expanding BLADE-ON-PETIOLE1 expression beyond lateral-organ boundaries. Commun Biol 2(1). https://doi.org/10.1038/s42003-019-0468-5

  • Zhao M, Cheng J, Guo B, Duan J, Che CT (2018) Momilactone and related diterpenoids as potential agricultural chemicals. J Agric Food Chem 66(30):7859–7872. https://doi.org/10.1021/acs.jafc.8b02602

    Article  CAS  Google Scholar 

  • Zheng S, Zhao S, Li Z, Wang Q, Yao F, Yang L, Pan J, Liu W (2015) Evaluating the effect of expressing a peanut resveratrol synthase gene in rice. PLoS One 10(8):e0136013. https://doi.org/10.1371/journal.pone.0136013

    Article  CAS  Google Scholar 

  • Zheng T, Tan W, Yang H, Zhang L, Li T, Liu B, Zhang D, Lin H, Qu LJ (2019) Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genet 15(3):e1007993. https://doi.org/10.1371/journal.pgen.1007993

    Article  CAS  Google Scholar 

  • Zhu LJ, Deng XG, Zou LJ, Zhang DW, Lin HH (2017) Enhancement of stress tolerance in cucumber seedlings by proanthocyanidins. Biol Planta 61(2):323–332. https://doi.org/10.1007/s10535-016-0663-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tak, Y., Kaur, M., Gautam, C., Kumar, R., Tilgam, J., Natta, S. (2023). Phenolic Biosynthesis and Metabolic Pathways to Alleviate Stresses in Plants. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Abiotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-6426-8_4

Download citation

Publish with us

Policies and ethics