Skip to main content

Impact of Negative Bottom Gate Voltage for Improvement of RF/Analog Performance in Asymmetric Junctionless Dual Material Double Gate MOSFET

  • Chapter
  • First Online:
New Horizons in Millimeter-Wave, Infrared and Terahertz Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 953))

Abstract

Research on double-gate MOSFET has already exhibited several novel solutions of existing problems like reducing leakage current or short-channel effect. For both long-channel structure or microscopic devices, the role of the bottom-gate becomes more critical for making higher ON-to-OFF current ratio, and therefore, individual-gate architecture becomes more popular than tied-gate architecture owing to the possibility of individual tuning. Junctionless devices come into the limelight due to better mobility control than the other DG configurations, and considered the subject of investigation in the last few years. The current chapter investigates the effect of negative bottom gate voltage on the analog and RF performances of Asymmetric Junctionless Dual Material Double Gate (AJDMDG) MOSFET. TCAD device simulator was used to investigate the effect of negative bottom gate voltage on analog and RF parameters. The results show that utilizing a low value of the work function of the bottom gate terminal improved the analog and RF performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International technology roadmap for semiconductors 2009 Edition and 2010 Update. http://www.itrs.net. Accessed 2018

  2. Mohsenifar S, Shahrokhabadi MH (2015) Gate stack high-κ materials for Si-based MOSFETs past, present, and futures. Microelectron Solid State Electron 4:12–24

    Google Scholar 

  3. Datta S (2013) Recent advances in high performance CMOS transistors: from planar to non-planar. Electrochem Soc Interfac 22:41–46. https://doi.org/10.1149/2.F04131if

    Article  CAS  Google Scholar 

  4. Chiang TK (2016) A short-channel-effect-degraded noise margin model for junctionless double-gate MOSFET Working on subthreshold CMOS logic gates. IEEE Trans Electron Devices 63

    Google Scholar 

  5. Hong S (2019) Compact charge modeling of double-gate MOSFETs considering the density-gradient equation. IEEE J Electron Devices Soc 7

    Google Scholar 

  6. Xie Q, Wang Z, Taur Y (2017) Analysis of short-channel effects in junctionless DG MOSFETs. IEEE Trans Electron Devices 64:3511–3514

    Article  CAS  Google Scholar 

  7. Gnudi A, Reggiani S, Gnani E, Baccarani G (2013) Semianalytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans Electron Devices 60:1342–1348

    Article  Google Scholar 

  8. Bari S, De D, Sarkar A (2015) Effect of gate engineering in JLSRG MOSFET to suppress SCEs: an analytical study. Physica E Low-dimens Syst Nanostruct 67:143–151

    Article  CAS  Google Scholar 

  9. Biswal SM, Baral B, De D, Sarkar A (2015) Analytical subthreshold modeling of dual material gate engineered nano-scale junctionless surrounding gate MOSFET considering ECPE. Superlattices Microstruct 82:103–112

    Article  CAS  Google Scholar 

  10. Reddy GV, Kumar MJ (2005) A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans Nanotechnol 4:260–268

    Article  Google Scholar 

  11. Singh J, Gadi V, Kumar MJ (2016) Modeling a dual-material-gate junctionless FET under full and partial depletion conditions using finite-differentiation method. IEEE Trans Electron Devices 63:2282–2287

    Article  CAS  Google Scholar 

  12. Kumari V, Modi N, Saxena M, Gupta M (2015) Theoretical investigation of dual material junctionless double gate transistor for analog and digital performance. IEEE Trans Electron Devices 62:2098–2105

    Article  Google Scholar 

  13. Taur Y (2000) An analytical solution to a double-gate MOSFET with undoped body. IEEE Electron Device Lett 21(5):241–247

    Google Scholar 

  14. Taur Y (2001) Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs. IEEE Trans Electron Devices 48(12):2861–2869

    Article  CAS  Google Scholar 

  15. Ortiz-Conde A, Garcia-Sanchez FJ, Muci J (2005) Rigorous analytic solution for the drain current of undoped symmetric dual-gate MOSFETs. Solid State Electron 49(4):640–647

    Article  CAS  Google Scholar 

  16. Ortiz-Conde A, García-Sánchez FJ, Muci J, Malobabic S, Liou JJ (2007) A review of core compact models for undoped double-gate SOI MOSFETs. IEEE Trans Electron Devices 54(1):131–140

    Article  CAS  Google Scholar 

  17. Roy K, Chowdhury AR, Deyasi A, Sarkar A (2019) Computing surface potential and drain current in nanometric double-gate MOSFET using Ortiz-Conde model. In: Advances in intelligent systems and computing book serie: contemporary advances in innovative and applicable information technology, vol 812, pp 41–47

    Google Scholar 

  18. Chakraborty D, Bhowmick S, Deyasi A (2018) Computing surface potential of double gate MOSFET for both free and doped carrier concentrations. In: IEEE 2nd international conference on electronics, materials engineering & nano-technology, Kolkata, India, pp 1–4

    Google Scholar 

  19. Nath A, Khanam F, Mukhopadhyay S, Deyasi A (2021), Surface potential computation for asymmetric Si–Si1−xGex ID-DG MOSFET following Ortiz-Conde model. In: Lecture notes in electrical engineering: nanoelectronics, circuits and communication systems, vol 692, pp 239–246

    Google Scholar 

  20. Vimala P, Balamurugan NB (2012) Quantum mechanical compact modeling of symmetric double-gate MOSFETs using variational approach. J Semicond 33(3):034001

    Article  Google Scholar 

  21. Deyasi A, Chowdhury AR, Roy K, Sarkar A (2018) Effect of high-K dielectric on drain current of ID-DG MOSFET using Ortiz-Conde model. In: IEEE electron devices Kolkata conference, pp 176–181

    Google Scholar 

  22. Chakraborty R, Mondal D, Deyasi A (2020) Investigating effect of structural parameters on static characteristics of ultrathin DG MOSFET using Taur’s model. In: Lecture notes in networks and systems: information, photonics and communication, vol 79, Chapter 2, pp 11–19

    Google Scholar 

  23. Biswas K, Sarkar A, Sarkar CK (2015) Impact of barrier thickness on Analog, RF and Linearity performance of nanoscale DG heterostructure MOSFET. Superlattices Microstruct 86:95–104

    Article  CAS  Google Scholar 

  24. Sarkar A, Sarkar CK (2013) RF and analogue performance investigation of DG tunnel FET. Int J Electron Lett 1:210–217

    Article  CAS  Google Scholar 

  25. Biswas K, Sarkar A, Sarka CK (2018) Fin shape influence on analog and RF performance of junctionless accumulation-mode bulk FinFETs. Microsyst Technol 24:2317–2324

    Article  CAS  Google Scholar 

  26. Sarkar A, De S, Dey A, Sarkar CK (2011) A new analytical subthreshold model of SRG MOSFET with analogue performance investigation. Int J Electron 99:267–283

    Article  Google Scholar 

  27. Basak A, Chanda M, Sarkar A (2019) Drain current modelling of unipolar junction dual material double-gate MOSFET (UJDMDG) for SoC applications. Microsyst Technol 27(11):3995–4005

    Google Scholar 

  28. Koley K, Syamal B, Kundu A, Mohankumar N, Sarkar CK (2012) Subthreshold analog/RF performance of underlap DG FETs with asymmetric source/drain extensions. Microelectron Reliab 52:2572–2578

    Article  Google Scholar 

  29. Koley K, Dutta A, Syamal B, Saha SK, Sarkar CK (2013) Subthreshold analog/RF performance enhancement of underlap DG FETs with high- K spacer for low power applications. IEEE Trans Electron Devices 60:63–69

    Article  Google Scholar 

  30. Chebaki E, Djeffal F, Hichem F, Bentrcia T (2016) Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct 92:80–91

    Article  CAS  Google Scholar 

  31. Sharma RK, Bucher M (2012) Device design engineering for optimum analog/RF performance of nanoscale DG MOSFETs. IEEE Trans Nanotechnol 11:992–998

    Google Scholar 

  32. Roy NC, Gupta A, Rai S (2015) Analytical surface potential modeling and simulation of junctionless double gate (JLDG) MOSFET for ultra-low-power analog/RF circuits. Microelectron J 46:916–922

    Article  CAS  Google Scholar 

  33. Ghosh D, Pariha MS, Armstrong GA, Kranti A (2012) High-performance junctionless MOSFETs for ultralow-power analog/RF applications. IEEE Electron Device Lett 33:1477–1479

    Article  CAS  Google Scholar 

  34. Deyasi A, Sarkar A, Roy K, Chowdhury AR (2021) Effect of high-K dielectric on differential conductance and transconductance of ID-DG MOSFET following Ortiz-Conde model. Microsyst Technol 27(11):3967–3975

    Article  CAS  Google Scholar 

  35. Deyasi A, Chakraborty R, Mondal D, Pramanik N, Mukhopadhyay S (2021) Analytical investigation of transconductance and differential conductance of ultrathin ID-DG MOSFET with gradual channel approximation. In: Lecture notes in electrical engineering: fifth international conference on microelectronics, computing and communication systems, vol 748, pp 117–126

    Google Scholar 

  36. Mukhopadhyay S, Ray P, Deyasi A (2020) Computing gate asymmetric effect on drain current of DG-MOSFET following Ortiz-Conde model. In: IEEE national conference on emerging trends on sustainable technology and engineering applications, pp 1–5

    Google Scholar 

  37. Sarkar A, De S, Dey A et al (2012) Analog and RF performance investigation of cylindrical surrounding-gate MOSFET with an analytical pseudo-2D model. J Comput Electron 11:182–195

    Article  CAS  Google Scholar 

  38. Sarkar A (2014) Study of RF performance of surrounding gate MOSFET with gate overlap and underlap. Adv Natl Sci Nanosci Nanotechnol 5

    Google Scholar 

  39. Bhowmick S, Chakraborty D, Deyasi A (2017) Computation of electrical parameters for single-gate high-K nanoscale MOSFET with cylindrical geometry. In: Advances in intelligent systems and computing: international conference on modelling and simulation, vol 749, pp 47–53

    Google Scholar 

  40. Deyasi A, Mukherjee S, Bhattacharjee AK, Sarkar A (2020) Classification of single and double-gate nanoscale MOSFET with different dielectrics from electrical characteristics using soft computing techniques. Int J Inf Technol 12(1):165–174

    Google Scholar 

  41. Basak A, Sarkar A (2020) Impact of back gate work function for enhancement of analog/RF performance of AJDMDG Stack MOSFET. Solid State Electron Lett 2:117–123

    Google Scholar 

  42. Abdullah G (2015) ATLAS device simulation software, Santa Clara, CA, USA

    Google Scholar 

  43. Goudan T, Miljanović V, Schmeiser C (2006) On the Shockley-Read-Hall model: generation-recombination in semiconductors. SIAM J Appl Math

    Google Scholar 

  44. Ringhofer C, Schmeiser C (1989) An approximate newton method for the solution of the basic semiconductor device equations. SIAM J Numer Anal 26:507–516

    Article  Google Scholar 

  45. Ferron A, Cottle B, Curatola G, Fiori G, Guichard E (2004) Schrödinger approach and density gradient model for quantum effects modeling. J Process Device Eng

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Deyasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basak, A., Deyasi, A., Sarkar, A. (2022). Impact of Negative Bottom Gate Voltage for Improvement of RF/Analog Performance in Asymmetric Junctionless Dual Material Double Gate MOSFET. In: Acharyya, A., Biswas, A., Inokawa, H. (eds) New Horizons in Millimeter-Wave, Infrared and Terahertz Technologies. Lecture Notes in Electrical Engineering, vol 953. Springer, Singapore. https://doi.org/10.1007/978-981-19-6301-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6301-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6300-1

  • Online ISBN: 978-981-19-6301-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics