Skip to main content

Enhancing Soil Organic Carbon Sequestration in Agriculture: Plans and Policies

  • Chapter
  • First Online:
Plans and Policies for Soil Organic Carbon Management in Agriculture

Abstract

Soil organic carbon (SOC) is a vital factor that positively affects soil fertility, agricultural production, and food security. However, current farming practices, intensive tillage, increasing global warming, and climate change have created a risk of losses of SOC, affecting food supply. Therefore, various management strategies to build soil carbon accumulation and sequestration have been continuously adopted. Net soil carbon sequestration on agricultural lands has the potential to offset 4% of yearly worldwide human-induced greenhouse gas emissions for the remainder of the century, making a significant contribution to reaching the Paris Agreement’s emissions reduction objectives. It is also pledged to adopt various plans and policies for building SOC in agriculture. By 2030, a carbon sink of 2.5–3 billion tons of CO2 equivalent must be created. A package like this would contain restrictions to limit soil carbon loss and encourage sustainable development and “win-win” solutions to current issues and many other climate change risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

CDM:

Clean Development Mechanism

CER:

Certified emission reduction

CO2:

Carbon dioxide

CSA:

Climate-smart agriculture

EU:

European Union

FAO:

Food and Agriculture Organization

GHG:

Greenhouse gas

GIS:

Geographic information system

Gt:

Gigatons

IPCC:

Intergovernmental Panel on Climate Change

IUCN:

International Union for Conservation of Nature and Natural Resources

LCA:

Life cycle analysis

M ha:

Million hectare

Mg:

Megagrams

N:

Nitrogen

NAPCC:

National Mission for Sustainable Agriculture

NASS:

National Academy of Agricultural Sciences

NMSA:

National Mission on Sustainable Agriculture

NPOF:

National Project on Organic Farming

Pg:

Petagrams

PKVY:

Paramparagat Krishi Vikas Yojana

SHM:

Soil Health Management Scheme

SOC:

Soil organic carbon

SOM:

Soil organic matter

UNCCD:

United Nations Convention to Combat Desertification

ZBNF:

Zero-budget natural farming

References

  • Abbas F, Hammad HM, Ishaq W, Farooque AA, Bakhat HF, Zia Z, Fahad S, Farhad W, Cerdà A (2020) A review of soil carbon dynamics resulting from agricultural practices. J Environ Manag 268:110319

    Article  CAS  Google Scholar 

  • Adewale C, Reganold JP, Higgins S, Evans RD, Carpenter-Boggs L (2018) Improving carbon footprinting of agricultural systems: boundaries, tiers, and organic farming. Environ Impact Assess Rev 71:41–48

    Article  Google Scholar 

  • Akhtar SM, Lindsay C, Alexander S, Graciela E, Sara M, Uriel M, Safriel SS (2017) Unpacking the concept of land degradation neutrality and addressing its operation through the Rio Conventions. J Environ Manag 195:4–15. S030147971630706X. https://doi.org/10.1016/j.jenvman.2016.09.044

    Article  Google Scholar 

  • Arneth A, Olsson L, Cowie A, Erb K-H, Hurlbert M, Kurz WA, Mirzabaev A, Rounsevell MDA (2021) Restoring degraded lands. Annu Rev Environ Resour 46:569–599

    Article  Google Scholar 

  • Arrouays D, Balesdent J, Germon JC, Jayet P-A, Soussana J-F, STENGEL P (2002) Increasing carbon stocks in French agricultural soils?

    Google Scholar 

  • Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML (2020) Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environ Dev Sustain 22:5045–5075

    Article  Google Scholar 

  • Ba F, Thiers PR, Liu Y (2018) The evolution of China’s emission trading mechanisms: from international offset market to domestic emission trading scheme. Environ Plan C Polit Sp 36:1214–1233

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Article  Google Scholar 

  • Bayer P, Aklin M (2020) The European Union emissions trading system reduced CO2 emissions despite low prices. Proc Natl Acad Sci 117:8804–8812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson J, Bullock JM, Egoh B, Everson C, Everson T, O’Connor T, O’Farrell PJ, Smith HG, Lindborg R (2019) Grasslands—more important for ecosystem services than you might think. Ecosphere 10:e02582

    Article  Google Scholar 

  • Bhattacharyya T, Pal DK, Mandal C, Velayutham M (2000) Organic carbon stock in Indian soils and geographical distribution. Curr Sci:655–660

    Google Scholar 

  • Bhattacharyya R, Ghosh BN, Mishra PK, Mandal B, Rao CS, Sarkar D, Das K, Anil KS, Lalitha M, Hati KM (2015) Soil degradation in India: challenges and potential solutions. Sustainability 7:3528–3570

    Article  Google Scholar 

  • Bolan NS, Szogi AA, Chuasavathi T, Seshadri B, Rothrock MJ, Panneerselvam P (2010) Uses and management of poultry litter. Worlds Poult Sci J 66:673–698

    Article  Google Scholar 

  • Boyd E, Hultman N, Roberts JT, Corbera E, Cole J, Bozmoski A, Ebeling J, Tippman R, Mann P, Brown K (2009) Reforming the CDM for sustainable development: lessons learned and policy futures. Environ Sci Pol 12:820–831

    Article  Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125

    Article  Google Scholar 

  • Cederberg C, Hedenus F, Wirsenius S, Sonesson U (2013) Trends in greenhouse gas emissions from consumption and production of animal food products–implications for long-term climate targets. Animal 7:330–340

    Article  CAS  PubMed  Google Scholar 

  • Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:64016

    Article  Google Scholar 

  • Cowie AL, Orr BJ, Sanchez VMC, Chasek P, Crossman ND, Erlewein A, Louwagie G, Maron M, Metternicht GI, Minelli S (2018) Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Pol 79:25–35

    Article  Google Scholar 

  • De Stefano A, Jacobson MG (2018) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor Syst 92:285–299

    Google Scholar 

  • Deffner D, Kleinow V, McElreath R (2020) Dynamic social learning in temporally and spatially variable environments. R Soc Open Sci 7:200734

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi PI, Devi I, Kumar L, Kumar D, Manjula M, Mukhopadhyay P, Raghu P, Sharma D, Sridhar R, Venkatachalam L (2017) Payment for ecosystem services guaranteed farm income and sustainable agriculture. Econ Polit Wkly 52:12–14

    Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868

    Article  Google Scholar 

  • Du H, Wang T, Xue X, Li S (2019) Estimation of soil organic carbon, nitrogen, and phosphorus losses induced by wind erosion in northern China. L Degrad Dev 30:1006–1022

    Article  Google Scholar 

  • Franzluebbers AJ (2010) Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States. Soil Sci Soc Am J 74:347–357

    Article  CAS  Google Scholar 

  • Frey SD, Ollinger S, Kea N, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS (2014) Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316

    Article  CAS  Google Scholar 

  • Fukuoka M (1985) The natural way of farming: the theory and practices of green philosophy, Tokyo Japan Publication, published in USA. Available at: https://azinelibrary.org/trash/Masanobu_Fukuoka__The_Natural_Way_of_Farming_-_The_theory_and_Practice_of_Green_Philosophy.pdf

  • Fulton S, Benjamin AH (2011) Foundations of sustainability. In: Environmental Forum 28, vol 6, pp 31–36

    Google Scholar 

  • Gama-Rodrigues AC (2011) Soil organic matter, nutrient cycling and biological dinitrogen-fixation in agroforestry systems. Agrofor Syst 81:191–193

    Article  Google Scholar 

  • Gao Y, Gao X, Zhang X (2017) The 2 C global temperature target and the evolution of the long-term goal of addressing climate change—from the United Nations framework convention on climate change to the Paris agreement. Engineering 3:272–278

    Article  Google Scholar 

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, Scialabba NE-H (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci 109:18226–18231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross A, Glaser B (2021) Meta-analysis on how manure application changes soil organic carbon storage. Sci Rep 11:1–13

    Article  Google Scholar 

  • Hübner R, Kühnel A, Lu J, Dettmann H, Wang W, Wiesmeier M (2021) Soil carbon sequestration by agroforestry systems in China: a meta-analysis. Agric Ecosyst Environ 315:107437

    Article  Google Scholar 

  • Hussain S, Hussain S, Guo R, Sarwar M, Ren X, Krstic D, Aslam Z, Zulifqar U, Rauf A, Hano C (2021) Carbon sequestration to avoid soil degradation: a review on the role of conservation tillage. Plan Theory 10:2001

    CAS  Google Scholar 

  • Idol T, Haggar J, Cox L (2011) Ecosystem services from smallholder forestry and agroforestry in the tropics. Integrating agriculture, conservation and ecotourism: examples from the field. Springer, Cham, pp 209–270

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philos Trans R Soc Lond B Biol Sci 329(1255):361–368. https://doi.org/10.1098/rstb.1990.0177

    Article  CAS  Google Scholar 

  • Jat ML, Dagar JC, Sapkota TB, Govaerts B, Ridaura SL, Saharawat YS, Sharma RK, Tetarwal JP, Jat RK, Hobbs H (2016) Climate change and agriculture: adaptation strategies and mitigation opportunities for food security in South Asia and Latin America. Advances in agronomy. Elsevier, pp 127–235

    Google Scholar 

  • Jat SL, Parihar CM, Dey A, Nayak HS, Ghosh A, Parihar N, Goswami AK, Singh AK (2019) Dynamics and temperature sensitivity of soil organic carbon mineralization under medium-term conservation agriculture as affected by residue and nitrogen management options. Soil Tillage Res 190:175–185

    Article  Google Scholar 

  • Jongbloed AW, Lenis NP (1998) Environmental concerns about animal manure. J Anim Sci 76:2641–2648

    Article  CAS  PubMed  Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167

    Article  CAS  Google Scholar 

  • Kauppi P, Sedjo R (2018) Technological and economic potential of options to enhance, maintain, and manage biological carbon reservoirs and geo-engineering. In: Economics of forestry. Routledge, p 373

    Google Scholar 

  • Kløve B, Berglund K, Berglund Ö, Weldon S, Maljanen M (2017) Future options for cultivated Nordic peat soils: can land management and rewetting control greenhouse gas emissions? Environ Sci Pol 69:85–93

    Article  Google Scholar 

  • Komatsuzaki M, Ohta H (2007) Soil management practices for sustainable agro-ecosystems. Sustain Sci 2:103–120

    Article  Google Scholar 

  • Krebs J, Bach S (2018) Permaculture—scientific evidence of principles for the agroecological design of farming systems. Sustainability 10:3218

    Article  Google Scholar 

  • Kumar L, Manjula M, Bhatta R, Venkatachalam L, Kumar DS, Devi PI, Mukhopadhyay P (2019) Doubling India’s farm incomes paying farmers for Ecosystem services, not just crops. Econ Polit Wkly 54:43–49

    Google Scholar 

  • Kutter A (2015) Land use, land cover and soil sciences – vol. V - The United Nations convention to combat desertification: policies and programs for implementation, Encyclopaedia of Life Support Systems (EOLSS). Available at: http://www.eolss.net/Sample-chapters/C19/E1-05-06-04.pdf

  • Laban P, Metternicht G, Davies J (2018) Soil biodiversity and soil organic carbon: keeping drylands alive. IUCN, Gland, p 10

    Book  Google Scholar 

  • Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326

    CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2015) Cover cropping and the “4 per thousand” proposal. J Soil Water Conserv 70:141A–141A

    Article  Google Scholar 

  • Lal R (2019) Accelerated soil erosion as a source of atmospheric CO2. Soil Tillage Res 188:35–40

    Article  Google Scholar 

  • Lal R, Smith P, Jungkunst HF, Mitsch WJ, Lehmann J, Nair PKR, McBratney AB, de Moraes Sá JC, Schneider J, Zinn YL (2018) The carbon sequestration potential of terrestrial ecosystems. J Soil Water Conserv 73:145A–152A

    Article  Google Scholar 

  • Lebel L, Garden P, Banaticla MRN, Lasco RD, Contreras A, Mitra AP, Sharma C, Nguyen HT, Ooi GL, Sari A (2007) Integrating carbon management into the development strategies of urbanizing regions in Asia. J Ind Ecol 11:61–81

    Article  CAS  Google Scholar 

  • Leifeld J, Angers DA, Chenu C, Fuhrer J, Kätterer T, Powlson DS (2013) Organic farming gives no climate change benefit through soil carbon sequestration. Proc Natl Acad Sci 110:E984–E984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. CRC Crit Rev Plant Sci 24:1–21

    Article  CAS  Google Scholar 

  • Liu X, Shen B, Price L, Lu H, Hasanbeigi A (2016) What China can learn from international policy experiences to improve industrial energy efficiency and reduce CO2 emissions?

    Google Scholar 

  • Lorenz K, Lal R, Ehlers K (2019) Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ sustainable development goals. L Degrad Dev 30:824–838

    Article  Google Scholar 

  • Luo Z, Wang E, Sun O (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ 139:224–231

    Article  CAS  Google Scholar 

  • Ma H, Zhao H (1994) United Nations: convention to combat desertification in those countries experiencing serious drought and desertification, particularly in Africa. Int Leg Mater 33:1328–1382

    Article  Google Scholar 

  • Magaudda S, D’Ascanio R, Muccitelli S, Palazzo AL (2020) ‘Greening’ Green infrastructure. Good Italian practices for enhancing green infrastructure through the common agricultural policy. Sustainability 12(2301)

    Google Scholar 

  • Maillard É, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Chang Biol 20:666–679

    Article  PubMed  Google Scholar 

  • Malhi SS, Izaurralde RC, Nyborg M, Solberg ED (1994) Influence of topsoil removal on soil fertility and barley growth. J Soil Water Conserv 49:96–101

    Google Scholar 

  • Mandal D, Sharda VN (2011) Assessment of permissible soil loss in India employing a quantitative biophysical model. Curr Sci:383–390

    Google Scholar 

  • Marks AB (2019) (Carbon) farming our way out of climate change. Denv L Rev 97:497

    Google Scholar 

  • Mattila TJ, Hagelberg E, Söderlund S, Joona J (2022) How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil Tillage Res 215:105204

    Article  Google Scholar 

  • McAfee K (2016) Green economy and carbon markets for conservation and development: a critical view. Int Environ Agreements Polit Law Econ 16:333–353

    Article  Google Scholar 

  • Mehra P, Baker J, Sojka RE, Bolan N, Desbiolles J, Kirkham MB, Ross C, Gupta R (2018) A review of tillage practices and their potential to impact the soil carbon dynamics. Adv Agron 150:185–230

    Article  Google Scholar 

  • Midgley JJ, Lawes MJ, Chamaillé-Jammes S (2010) Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Aust J Bot 58:1–11

    Article  Google Scholar 

  • Millennium Ecosystem Assessment MEA (2005) Ecosystems and human Well-being. Synthesis (Stuttg)

    Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z-S, Cheng K, Das BS (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles 22. https://doi.org/10.1029/2007GB002947

  • Montanarella L, Panagos P (2021) The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100:104950

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  CAS  PubMed  Google Scholar 

  • NAAS (2021) Strategies for enhancing soil organic carbon for food security and climate action

    Google Scholar 

  • Nieder R, Benbi DK, Reichl FX (2018) Soil components and human health. Springer

    Book  Google Scholar 

  • Niti Aayog (2020) Niti Aayog annual report 2019–20 about policy and programme. Available at: https://www.visionias.net/2020/06/niti-aayog-annual-report-2019-20-pdf.html

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104:359–377

    Article  CAS  Google Scholar 

  • Panda RB, Biswal T (2018) Impact of fly ash on soil properties and productivity. Int J Agric Environ Biotechnol 11:275–283

    Google Scholar 

  • Pathak H, Bhatia A, Jain N (2014) Greenhouse gas emission from Indian agriculture: trends, mitigation and policy needs. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Paustian K, Larson E, Kent J, Marx E, Swan A (2019) Soil C sequestration as a biological negative emission strategy. Front Clim 8

    Google Scholar 

  • Pimentel D, Burgess M (2014) An environmental, energetic and economic comparison of organic and conventional farming systems. Integrated Pest Management. Springer, Cham, pp 141–166

    Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops–a meta-analysis. Agric Ecosyst Environ 200:33–41

    Article  CAS  Google Scholar 

  • Powlson DS, Smith P, Smith JU (2013) Evaluation of soil organic matter models: using existing long-term datasets. Springer Science & Business Media, Cham

    Google Scholar 

  • Prăvălie R (2021) Exploring the multiple land degradation pathways across the planet. Earth Sci Rev 220:103689

    Article  Google Scholar 

  • Pulleman M, Creamer R, Hamer U, Helder J, Pelosi C, Peres G, Rutgers M (2012) Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Curr Opin Environ Sustain 4:529–538

    Article  Google Scholar 

  • Ramesh T, Bolan NS, Kirkham MB, Wijesekara H, Kanchikerimath M, Rao CS, Sandeep S, Rinklebe J, Ok YS, Choudhury BU (2019) Soil organic carbon dynamics: impact of land-use changes and management practices: a review. Adv Agron 156:1–107

    Article  Google Scholar 

  • Rao CS, Gopinath KA, Prasad J, Singh AK (2016) Climate-resilient villages for sustainable food security in tropical India: concept, process, technologies, institutions, and impacts. Advances in Agronomy, Elsevier, pp 101–214

    Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Eugenio N (2021) The global soil partnership: tackling global soil threats through collective action. International yearbook of soil law and policy 2019. Springer, Cham, pp 197–221

    Google Scholar 

  • Roper WR, Osmond DL, Heitman JL, Wagger MG, Reberg-Horton SC (2017) Soil health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Sci Soc Am J 81:828–843

    Article  CAS  Google Scholar 

  • Rose S, Halstead J, Griffin T (2021) Zero budget natural farming in Andhra Pradesh: a review of evidence, gaps, and future considerations. Tufts University, Massachusetts

    Google Scholar 

  • Ruis SJ, Blanco-Canqui H (2017) Cover crops could offset crop residue removal effects on soil carbon and other properties: a review. Agron J 109:1785–1805

    Article  CAS  Google Scholar 

  • Sharma M, Kaushal R, Kaushik P, Ramakrishna S (2021) Carbon farming: prospects and challenges. Sustainability 13:11122

    Article  CAS  Google Scholar 

  • Smith P, Powlson D, Glendining M, Smith JO (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Chang Biol 3:67–79

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363:789–813

    Article  CAS  Google Scholar 

  • Smith J, Yeluripati J, Smith P, Nayak DR (2020) Potential yield challenges to scale-up of zero budget natural farming. Nat Sustain 3:247–252

    Article  Google Scholar 

  • Sočo E, Kalembkiewicz J (2009) Investigations on Cr mobility from coal fly ash. Fuel 88:1513–1519

    Article  Google Scholar 

  • Soussana J-F, Lutfalla S, Ehrhardt F, Rosenstock T, Lamanna C, Havlík P, Richards M, Chotte J-L, Torquebiau E, Ciais P (2019) Matching policy and science: rationale for the ‘4 per 1000-soils for food security and climate initiative. Soil Tillage Res 188:3–15

    Article  Google Scholar 

  • Spugnoli P, Dainelli R (2013) Environmental comparison of draught animal and tractor power. Sustain Sci 8:61–72

    Article  Google Scholar 

  • Steel I, Harris T (2020) Covid-19 economic recovery: fiscal stimulus choices for lower-income countries. Inst Fisc Stud, London

    Google Scholar 

  • Stewart RD, Jian J, Gyawali AJ, Thomason WE, Badgley BD, Reiter MS, Strickland MS (2018) What we talk about when we talk about soil health

    Google Scholar 

  • Stringer LC, Dougill AJ, Mkwambisi DD, Dyer JC, Kalaba FK, Mngoli M (2012) Challenges and opportunities for carbon management in Malawi and Zambia. Carbon Manag 3:159–173

    Article  Google Scholar 

  • Tellin S, Myers RL (2018) Cover crop impacts on US cropland carbon sequestration. J Soil Water Conserv 73:117A–121A

    Article  Google Scholar 

  • Tiefenbacher A, Sandén T, Haslmayr H-P, Miloczki J, Wenzel W, Spiegel H (2021) Optimizing carbon sequestration in croplands: a synthesis. Agronomy 11:882

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel M-S, Speratti A, Baudron F, Verhulst N, Govaerts B (2015) Crop residue management and soil health: a systems analysis. Agric Syst 134:6–16

    Article  Google Scholar 

  • van Wesemael B, Paustian K, Andrén O, Cerri CEP, Dodd M, Etchevers J, Goidts E, Grace P, Kätterer T, McConkey BG (2011) How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant Soil 338:247–259

    Article  CAS  Google Scholar 

  • Zhang B, Tian H, Lu C, Dangal SRS, Yang J, Pan S (2017) Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling. Earth Syst Sci Data 9:667–678

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, ICAR-Indian Agricultural Research Institute, New Delhi, and the Head, Division of Environment Science, for providing necessary facilities and support services for this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinesh, G.K. et al. (2022). Enhancing Soil Organic Carbon Sequestration in Agriculture: Plans and Policies. In: Meena, R.S., Rao, C.S., Kumar, A. (eds) Plans and Policies for Soil Organic Carbon Management in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-19-6179-3_4

Download citation

Publish with us

Policies and ethics