Skip to main content

Phytochemically Rich Medicinally Important Plant Families

  • Chapter
  • First Online:
Phytochemical Genomics

Abstract

Plants are rich in phytochemicals and they use them for their basic processes including growth and development. Besides playing pivotal roles in the plants, phytochemicals also have different biological activities such as antiviral, antitumour, anti-inflammatory and antimicrobial activity. Many of the plant-based compounds have shown health-promoting activities. Medicinal plants are still used in various countries for primary health-care purposes due to their bioactivities. Scientists have tried to isolate the active compounds from the plants which have medicinal properties during the nineteenth and twentieth centuries. Secondary metabolites including alkaloid, saponins, lignans and terpenes are produced through numerous biosynthetic pathways, including shikimate, malonyl-CoA, mevalonate and pentose phosphate pathways. Among the angiosperms, it has been reported that Amaranthaceae, Apiaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Poaceae, Rutaceae and Solanaceae are the major plant families rich in phytochemicals. Due to their huge medicinal importance, researchers are now attempting to obtain plant-derived bioactive compounds in higher amounts for their usage in nutraceuticals and medicinal industries. This book chapter includes information about phytochemical extraction, biosynthesis and their biological activities in some important plant families including Amaranthaceae, Apiaceae, Cucurbitaceae, Lamiaceae and Lauraceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas Z, Babaei E, Feizi MA, Dehghan G (2015) Anti-proliferative and apoptotic effects of dendrosomal farnesiferol C on gastric cancer cells. Asian Pac J Cancer Prev 16:5325–5329

    Article  Google Scholar 

  • Abd El Razek MH, Ohta S, Ahmed AA, Hirata T (2001) Monoterpene coumarins from Ferula ferulago. Phytochemistry 57:1201–1203

    Article  Google Scholar 

  • Abdel-Hameed ESS, Bazaid SA, Al Zahrani O, El-Halmouch Y, El-Sayed MM, El-Wakil E (2014) Chemical composition of volatile components, antimicrobial and anticancer activity of n-hexane extract and essential oil from Trachyspermum ammi L. seeds. Orient J Chem 30:1653–1662

    Article  CAS  Google Scholar 

  • Abdelwahab SI, Mariod AA, Taha MM, Zaman FQ, Abdelmageed AH, Khamis S, Sivasothy Y, Awang K (2017) Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm (Lauraceae). Arab J Chem 10:131–135

    Article  CAS  Google Scholar 

  • Abdou AM, Abdallah HM, Mohamed MA, Fawzy GA, Abdel Naim AB (2013) A new anti-inflammatory triterpene saponin isolated from Anabasis setifera. Arch Pharm Res 36:715–722

    Article  CAS  Google Scholar 

  • Abed El-Aziz A, Abed El-Aziz H (2011) Antimicrobial proteins and oil seeds from pumpkin. Nat Sci 9:105–119

    Google Scholar 

  • Abu-Reidah IM, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A (2013) Profiling of phenolic and other polar constituents from hydro-methanolic extract of watermelon (Citrullus lanatus) by means of accurate-mass spectrometry (HPLC–ESI–QTOF–MS). Int Food Res J 51:354–362

    Article  CAS  Google Scholar 

  • Adedapo A, Adewuyi T, Sofidiya M (2013) Phytochemistry, anti-inflammatory and analgesic activities of the aqueous leaf extract of Lagenaria breviflora (Cucurbitaceae) in laboratory animals. Rev Biol Trop 61:281–290

    Article  Google Scholar 

  • Adegbola PI, Adetutu A, Olaniyi TD (2020) Antioxidant activity of Amaranthus species from the Amaranthaceae family–a review. S Afr J Bot 133:111–117

    Article  CAS  Google Scholar 

  • Adeoti MF, Gogahy K, Bidie PA, Camara-Cesse M, Monteomo FG, Kolia IK, Dosso M (2016) Anti-inflammatory and antioxidant effects of ethanol extract of Gomphrena celosioides (Amaranthaceae) in wistar rats. Int J Pharm 4:503–511

    Google Scholar 

  • Ahmed SA, Hanif S, Iftkhar T (2013) Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open J Med Microbiol 3:164–171

    Article  Google Scholar 

  • Alam M, Khan A, Wadood A, Khan A, Bashir S, Aman A, Jan AK, Rauf A, Ahmad B, Khan AR (2016) Bioassay-guided isolation of sesquiterpene coumarins from Ferula narthex Bioss: a new anticancer agent. Front Pharmacol 7:26–40

    Google Scholar 

  • Ali I, Mu Y, Atif M, Hussain H, Li J, Li D, Shabbir M, Bankeu JJJK, Cui L, Sajjad S, Wang D, Wang X (2021) Separation and anti-inflammatory evaluation of phytochemical constituents from Pleurospermum candollei (Apiaceae) by high-speed countercurrent chromatography with continuous sample load. J Sep Sci 44:2663–2673

    Article  CAS  Google Scholar 

  • Alonso-Carrillo N, de los Ángeles Aguilar-Santamaría M, Vernon-Carter EJ, Jiménez-Alvarado R, Cruz-Sosa F, Román Guerrero A (2017) Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Ind Crop Prod 103:213–221

    Article  CAS  Google Scholar 

  • Alqahtani A, Tongkao-on W, Li KM, Razmovski-Naumovski V, Chan K, Li GQ (2015) Seasonal variation of triterpenes and phenolic compounds in Australian Centella asiatica (L.) Urb. Phytochem Anal 26:436–443

    Article  CAS  Google Scholar 

  • Arawwawala M, Thabrew I, Arambewela L, Handunnetti S (2010) Anti-inflammatory activity of Trichosanthes cucumerina Linn. in rats. J Ethnopharmacol 131:538–543

    Article  Google Scholar 

  • Arcanjo DDR, de Oliveira Sena IV, De Albuquerque ACM, Neto BM, Santana LCLR, Silva NCB, dos Santos Soares MJ (2011) Phytochemical screening and evaluation of cytotoxic, antimicrobial and cardiovascular effects of Gomphrena globosa L.(Amaranthaceae). J Med Plant Res 5:2006–2010

    Google Scholar 

  • Ashande CM, Lufuluabo GL, Mukiza J, Mpiana PT, Ngbolua KT, Ngiala GB, Liyongo CI (2019) A mini-review on the phytochemistry and pharmacology of the medicinal plant species Persea americana Mill. (Lauraceae). Discov Phytomed 6:102–111

    Google Scholar 

  • Ashour ML, Youssef FS, Gad HA, El-Readi MZ, Bouzabata A, Abuzeid RM, Sobeh M, Wink M (2018) Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. J Pharm Pharmacol 70:952–963

    Article  CAS  Google Scholar 

  • Atsamo AD, Lontsie Songmene A, Metchi Donfack MF, Ngouateu OB, Nguelefack TB, Dimo T (2021) Aqueous extract from Cinnamomum zeylanicum (Lauraceae) stem bark ameliorates gentamicin-induced nephrotoxicity in rats by modulating oxidative stress and inflammatory markers. Evid Based Complement Alternat Med 2021:5543889. https://doi.org/10.1155/2021/5543889

    Article  Google Scholar 

  • Aye MM, Aung HT, Sein MM, Armijos C (2019) A review on the phytochemistry, medicinal properties and pharmacological activities of 15 selected Myanmar medicinal plants. Molecules 24:293. https://doi.org/10.3390/molecules24020293

    Article  CAS  Google Scholar 

  • Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223–229

    Article  CAS  Google Scholar 

  • Bardaweel SK, Bakchiche BAL, Salamat HA, Rezzoug M, Gherib A, Flamini G (2018) Chemical composition, antioxidant, antimicrobial and antiproliferative activities of essential oil of Mentha spicata L.(Lamiaceae) from Algerian Saharan atlas. BMC Complement Altern Med 18:1–7

    Article  Google Scholar 

  • Barku VY, Opoku-Boahen Y, Owusu-Ansah E, Mensah EF (2013) Antioxidant activity and the estimation of total phenolic and flavonoid contents of the root extract of Amaranthus spinosus. Asian J Plant Sci 3:69

    CAS  Google Scholar 

  • Barros L, Pereira E, Calhelha RC, Dueñas M, Carvalho AM, Santos-Buelga C, Ferreira IC (2013) Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J Funct Foods 5:1732–1740

    Article  CAS  Google Scholar 

  • Batra P, Sharama AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech 3:439–459

    Google Scholar 

  • Belay R, Makonnen E (2020) Anti-inflammatory activities of ethanol leaves extract and solvent fractions of Zehneria scabra (Cucurbitaceae) in rodents. Asian J Nat Prod Biochem 18:42–56

    Article  Google Scholar 

  • Betim FC, Oliveira CF, Souza AM, Szabo EM, Zanin SM, Miguel OG, Miguel MD, Dias JD (2019) Ocotea nutans (Nees) Mez (Lauraceae): chemical composition, antioxidant capacity and biological properties of essential oil. Braz J Pharm Sci 55:e18284. https://doi.org/10.1590/s2175-97902019000118284

    Article  CAS  Google Scholar 

  • Bhattacharya B, Samanta M, Pal P, Chakraborty S, Samanta A (2010) In vitro evaluation of antifungal and antibacterial activities of the plant Coccinia grandis (L.) voigt (Family-Cucurbitaceae). J Phytol 2:52–57

    Google Scholar 

  • Bhattacharya B, Lalee A, Mal DK, Samanta A (2011) In-vivo and in-vitro anticancer activity of Coccinia grandis (L.) Voigt. (Family: Cucurbitaceae) on Swiss albino mice. J Pharm Res 4:567–569

    Google Scholar 

  • Biella CDA, Salvador MJ, Dias DA, Dias-Baruffi M, Pereira-Crott LS (2008) Evaluation of immunomodulatory and anti-inflammatory effects and phytochemical screening of Alternanthera tenella Colla (Amaranthaceae) aqueous extracts. Mem Inst Oswaldo Cruz 103:569–577

    Article  Google Scholar 

  • Bissim SM, Kenmogne SB, Tcho AT, Lateef M, Ahmed A, Happi EN, Wansi JP, Ali MS, Waffo AFK (2019) Bioactive acridone alkaloids and their derivatives from Citrus aurantium (Rutaceae). Phytochem Lett 29:148–153

    Article  CAS  Google Scholar 

  • Bonesi M, Loizzo MR, Acquaviva R, Malfa GA, Aiello F, Tundis R (2017) Anti-inflammatory and antioxidant agents from Salvia genus (Lamiaceae): an assessment of the current state of knowledge. Antiinflamm Antiallergy Agents Med Chem 16:70–86

    Article  CAS  Google Scholar 

  • Bortolotti M, Mercatelli D, Polito L (2019) Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front Pharmacol 10:486. https://doi.org/10.3389/fphar.2019.00486

    Article  CAS  Google Scholar 

  • Boukhatem MN, Darwish NH, Sudha T, Bahlouli S, Kellou D, Benelmouffok AB, Chader H, Rajabi M, Benali Y, Mousa SA (2020) In vitro antifungal and topical anti-inflammatory properties of essential oil from wild-growing Thymus vulgaris (Lamiaceae) used for medicinal purposes in Algeria: a new source of carvacrol. Sci Pharm 88:33. https://doi.org/10.3390/scipharm88030033

    Article  CAS  Google Scholar 

  • Bourhia M, Laasri FE, Aghmih K, Ullah R, Alqahtani AS, Mahmood HM, Mzibri ME, Gmouh S, Khlil N, Benbacer L (2020) Phytochemical composition, antioxidant activity, antiproliferative effect and acute toxicity study of Bryonia dioica roots used in North African alternative medicine. Int J Agric Biol 23:597–602

    CAS  Google Scholar 

  • Bulbul IJ, Nahar L, Ripa FA, Haque O (2011) Antibacterial, cytotoxic and antioxidant activity of chloroform, n-hexane and ethyl acetate extract of plant Amaranthus spinosus. Int J Pharmtech Res 3:1675–1680

    Google Scholar 

  • Bursal E, Aras A, Kılıc O (2019) Evaluation of antioxidant capacity of endemic plant Marrubium astracanicum subsp. macrodon: identification of its phenolic contents by using HPLC-MS/MS. Nat Prod Res 33:1975–1979

    Article  CAS  Google Scholar 

  • Busuioc AC, Botezatu AVD, Furdui B, Vinatoru C, Maggi F, Caprioli G, Dinica RM (2020) Comparative study of the chemical compositions and antioxidant activities of fresh juices from Romanian Cucurbitaceae varieties. Molecules 25:5468. https://doi.org/10.3390/molecules25225468

    Article  CAS  Google Scholar 

  • Cabral C, Poças J, Gonçalves MJ, Cavaleiro C, Cruz MT, Salgueiro L (2015) Ridolfia segetum (L.) Moris (Apiaceae) from Portugal: a source of safe antioxidant and anti-inflammatory essential oil. Ind Crop Prod 65:56–61

    Article  CAS  Google Scholar 

  • Chahota RK, Sharma V, Ghani M, Sharma TR, Rana JC, Sharma SK (2017) Genetic and phytochemical diversity analysis in Bunium persicum populations of north-western Himalaya. Physiol Mol Biol Plants 23:429–441

    Article  CAS  Google Scholar 

  • Chan YY, Li CH, Shen YC, Wu TS (2010) Anti-inflammatory principles from the stem and root barks of Citrus medica. Chem Pharm Bull 58:61–65

    Article  CAS  Google Scholar 

  • Chang CI, Tseng HI, Liao YW, Yen CH, Chen TM, Lin CC, Cheng HL (2011) In vivo and in vitro studies to identify the hypoglycaemic constituents of Momordica charantia wild variant WB24. Food Chem 125:521–528

    Article  CAS  Google Scholar 

  • Chao CY, Sung PJ, Wang WH, Kuo YH (2014) Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules 19:12777–12788

    Article  Google Scholar 

  • Chekroun E, Benariba N, Adida H, Bechiri A, Azzi R, Djaziri R (2015) Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and Bryonia dioica roots. Asian Pac J Trop Dis 5:632–637

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  • Chinh HV, Luong NX, Thin DB, Dai DN, Hoi TM, Ogunwande IA (2017) Essential oils leaf of Cinnamomum glaucescens and Cinnamomum verum from Vietnam. Am J Plant Sci 8:2712–2721

    Article  CAS  Google Scholar 

  • Chou ST, Lai CC, Lai CP, Chao WW (2018) Chemical composition, antioxidant, anti-melanogenic and anti-inflammatory activities of Glechoma hederacea (Lamiaceae) essential oil. Ind Crop Prod 122:675–685

    Article  CAS  Google Scholar 

  • Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. Pharm Biomed Anal 41:683–693

    Article  CAS  Google Scholar 

  • Chuang CY, Hsu C, Chao CY, Wein YS, Kuo YH, Huang CJ (2006) Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPAR alpha in bitter gourd (Momordica charantia L.). J Biomed Sci 13:763–772

    Article  CAS  Google Scholar 

  • Chung NT, Huong LT, Dai DN, Ogunwande IA (2020) Chemical compositions of essential oils and antimicrobial activity of Hyptis suaveolens (L.) Poit. (Lamiaceae) from Vietnam. Eur J Med Plants 31:114–123

    Article  Google Scholar 

  • Cocan I, Alexa E, Danciu C, Radulov I, Galuscan A, Obistioiu D, Morvay AA, Sumalan RM, Poiana MA, Pop G, Dehelean CA (2018) Phytochemical screening and biological activity of Lamiaceae family plant extracts. Exp Ther Med 15:1863–1870

    CAS  Google Scholar 

  • Costa LS, Reiniger LR, Trindade H, Heinzmann BM, Bianchini NH (2019) Use of frozen leaves for morpho-anatomical characterization of Nectandra megapotamica (Spreng.) Mez, Lauraceae. Braz Arch Biol Technol 62:e19180231. https://doi.org/10.1590/1678-4324-2019180231

    Article  CAS  Google Scholar 

  • Coutinho HD, de Morais Oliveira-Tintino CD, Tintino SR, Pereira RL, de Freitas TS, da Silva MA, Franco JL, da Cunha FA, da Costa JG, de Menezes IR, Boligon AA (2018) Toxicity against Drosophila melanogaster and antiedematogenic and antimicrobial activities of Alternanthera brasiliana (L.) Kuntze (Amaranthaceae). Environ Sci Pollut Res 25:10353–10361

    Article  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Bio Chem Mol Biol 24:1250–1319

    Google Scholar 

  • Da Silva YC, Silva EMS, Fernandes NDS, Lopes NL, Orlandi PP, Nakamura CV, da Veiga Júnior VF (2021) Antimicrobial substances from Amazonian Aniba (Lauraceae) species. Nat Prod Res 35:849–852

    Article  Google Scholar 

  • Damasceno CSB, Oliveira LFD, Szabo EM, Souza ÂM, Dias JFG, Miguel MD, Miguel OG (2017) Chemical composition, antioxidant and biological activity of Ocotea bicolor Vattimo-Gil (LAURACEAE) essential oil. Braz J Pharm Sci 53:e17298. https://doi.org/10.1590/s2175-97902017000417298

    Article  CAS  Google Scholar 

  • De Oliveira MS, da Costa WA, Bezerra FWF, Araujo ME, Ferreira GC, de Carvalho Junior RN (2018) Phytochemical profile and biological activities of Momordica charantia L.(Cucurbitaceae): a review. Afr J Biotechnol 17:829–846

    Article  Google Scholar 

  • De Silva GO, Abeysundara AT, Aponso MMW (2017) Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. Am J Essent Oil 5:29–32

    Google Scholar 

  • De Sousa AC, Alviano DS, Blank AF, Alves PB, Alviano CS, Gattass CR (2004) Melissa officinalis L. essential oil: antitumoral and antioxidant activities. J Pharm Pharmacol 56:677–681

    Article  Google Scholar 

  • De P, Baltas M, Bedos-Belval F (2011) Cinnamic acid derivatives as anticancer agents-a review. Curr Med Chem 18:1672–1703

    Article  CAS  Google Scholar 

  • Demir S, Korukluoglu M (2020) A comparative study about antioxidant activity and phenolic composition of cumin (Cuminum cyminum L.) and coriander (Coriandrum sativum L.). Indian J Tradit Knowl 19:383–393

    Google Scholar 

  • Derouich M, Bouhlali EDT, Hmidani A, Bammou M, Bourkhis B, Sellam K, Alem C (2020) Assessment of total polyphenols, flavonoids and anti-inflammatory potential of three Apiaceae species grown in the Southeast of Morocco. Sci Afr 9:e00507. https://doi.org/10.1016/j.sciaf.2020.e00507

    Article  Google Scholar 

  • Devkota HP, Kurizaki A, Tsushiro K, Adhikari-Devkota A, Hori K, Wada M, Watanabe T (2021) Flavonoids from the leaves and twigs of Lindera sericea (Seibold et Zucc.) Blume var. sericea (Lauraceae) from Japan and their bioactivities. Funct Foods Health Dis 11:34–43

    Article  CAS  Google Scholar 

  • Dhanokar S, Kale M, Aher A, Gawali S, Patil R (2020) LUTEOLIN-phytoconstituents responsible for anti-inflammatory activity in leaves of Vitex negundo Linn. (Lamiaceae). Curr Trends Biotechnol Pharm 2:45–50

    Google Scholar 

  • Di Napoli M, Varcamonti M, Basile A, Bruno M, Maggi F, Zanfardino A (2019) Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiaceae) essential oil. Nat Prod Res 33:3436–3440

    Article  Google Scholar 

  • Di Stefano V, Pitonzo R, Schillaci D (2011) Antimicrobial and antiproliferative activity of Athamanta sicula L. (Apiaceae). Pharmacogn Mag 7:31–34

    Article  Google Scholar 

  • Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–646

    Article  CAS  Google Scholar 

  • Ekin HN, Orhan DD, Orhan İE, Orhan N, Aslan M (2019) Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. J Res Pharm 23:749–758

    CAS  Google Scholar 

  • Elghwaji W, El-Sayed AM, El-Deeb KS, ElSayed AM (2017) Chemical composition, antimicrobial and antitumor potentiality of essential oil of Ferula tingitana L. Apiaceae grow in Libya. Pharmacogn Mag 13:446–451

    Article  Google Scholar 

  • Eseyin OA, Sattar MA, Rathore HA (2014) A review of the pharmacological and biological activities of the aerial parts of Telfairia occidentalis Hook. f. (Cucurbitaceae). Trop J Pharm Res 13:1761–1769

    Google Scholar 

  • Eseyin OA, Etiemmana GC, Enobong M, Ebong A, Etim I, Udobre SA, Johnson E, Attih E, Effiong A (2015) Evaluation of the antioxidant properties of some commonly eaten vegetables in Akwa Ibom State of Nigeria. Annu Res Rev Biol 5:165–173

    Article  Google Scholar 

  • Estrada-Zúñiga ME, Arano-Varela H, Buendía-González L, Orozco-Villafuerte J (2012) Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures. Rev Mex Ing Quim 11:89–96

    Google Scholar 

  • Ezzat SM, Raslan M, Salama MM, Menze ET, El Hawary SS (2019) In vivo anti-inflammatory activity and UPLC-MS/MS profiling of the peels and pulps of Cucumis melo var. cantalupensis and Cucumis melo var. reticulatus. J Ethnopharmacol 237:245–254

    Article  CAS  Google Scholar 

  • Fathiazad F, Hamedeyazdan S (2011) A review on Hyssopus officinalis L.: composition and biological activities. Afr J Pharm Pharmacol 5:1959–1966

    Google Scholar 

  • Feng W, Zhou Y, Zhou L, Kang LY, Wang X, Li BL, Li Q, Niu LY (2019) Novel cucurbitane triterpenes from the tubers of Hemsleya amabilis with their cytotoxic activity. Molecules 24:331. https://doi.org/10.3390/molecules24020331

    Article  CAS  Google Scholar 

  • Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D’Arcangelo D, Norelli S, Valle G, Nisini R, Beninati S, Tabolacci C, Jadeja RN (2019) Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int 2019:8748253

    Article  Google Scholar 

  • Francis SM, Ranjini B, Ambethkar A, Maheswari CU, Selvaraj N (2014) In vitro antimicrobial activity of Cucumis Anguria L. (Cucurbitaceae) - the ethnomedicinal plant. Int J Curr Biotechnol 2(8):1–6

    Google Scholar 

  • Fresco P, Borges FI, Diniz C, Marques MP (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26:747–766

    Article  CAS  Google Scholar 

  • Ghaffari Z, Rahimmalek M, Sabzalian MR (2018) Variations in essential oil composition and antioxidant activity in Perovskiaabrotanoides Kar. collected from different regions in Iran. Chem Biodivers 15:e1700565

    Article  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Antioxidant activities, total Phenolics and flavonoids content in two varieties of Malaysia Young Ginger (Zingiber officinale Roscoe). Molecules 15:4324–4333

    Article  CAS  Google Scholar 

  • Ghavam M, Manconi M, Manca ML, Bacchetta G (2021) Extraction of essential oil from Dracocephalum kotschyi Boiss. (Lamiaceae), identification of two active compounds and evaluation of the antimicrobial properties. J Ethnopharmacol 267:113513

    Article  CAS  Google Scholar 

  • Gomaa SE, Friedersdorf M, Enshasy HA, Abou-Donia MB (2020) In vitro comparative study for anti-proliferative activity of some plant extracts, Fam. Apiaceae, on human cervical (HeLa) cancer cell line. Indonesian J Pharm 31:108–115

    Article  CAS  Google Scholar 

  • González-Chávez MM, Alonso-Castro AJ, Zapata-Morales JR, Arana-Argáez V, Torres-Romero JC, Medina-Rivera YE, Sánchez-Mendoza E, Pérez-Gutiérrez S (2018) Anti-inflammatory and antinociceptive effects of tilifodiolide, isolated from Salvia tiliifolia Vahl (Lamiaceae). Drug Dev Res 79:165–172

    Article  Google Scholar 

  • Gottlieb OR (1972) Chemosystematics of the Lauraceae. Phytochem 11:1537–1570

    Article  CAS  Google Scholar 

  • Guedri MM, Romdhane M, Lebrihi A, Mathieu F, Bouajila J (2020) Chemical composition and antimicrobial and antioxidant activities of Tunisian, France and Austrian Laurus nobilis (Lauraceae) essential oils. Not Bot Horti Agrobot Cluj-Nap 48:1929–1940

    Article  CAS  Google Scholar 

  • Güneş H, Alper M, Çelikoğlu N (2019) Anticancer effect of the fruit and seed extracts of Momordica charantia L. (Cucurbitaceae) on human cancer cell lines. Trop J Pharm Res 18:2057–2065

    Article  Google Scholar 

  • Gurudeeban S, Rajamanickam E, Ramanathan T, Satyavani K (2010) Antimicrobial activity of Citrullus colocynthis in Gulf of Mannar. Int J Curr Res 2:78–81

    Google Scholar 

  • Gutzeit HO, Ludwig MJ (2014) Plant natural products: synthesis, biological functions and practical applications. Wiley, Hoboken, NJ, p 40

    Google Scholar 

  • Hajib A, Nounah I, Oubihi A, Harhar H, Gharby S, Kartah B, Bougrin CZ (2020) Chemical composition and biological activities of essential oils from the fruits of Cuminum cyminum L. and Ammodaucus leucotrichus L.(Apiaceae). J Essent Oil-Bear Plants 23:474–483

    Article  CAS  Google Scholar 

  • Hamedi A, Lashgari AP, Pasdaran A (2019) Antimicrobial activity and analysis of the essential oils of selected endemic edible Apiaceae plants root from Caspian hyrcanian region (North of Iran). Pharm Sci 25:138–144

    Article  Google Scholar 

  • Handayani W, Yunilawati R, Fauzia V, Imawan C (2019) Coriandrum sativum l. (apiaceae) and Elettaria cardamomum (l.) maton (zingiberaceae) for antioxidant and antimicrobial protection. J Phys Conf Ser 1317:012092

    Article  CAS  Google Scholar 

  • House NC, Puthenparampil D, Malayil D, Narayanankutty A (2020) Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. S Afr J Bot 135:408–412

    Article  CAS  Google Scholar 

  • Hsu C, Hsieh CL, Kuo YH, Huang CJ (2011) Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia. J Agric Food Chem 59:4553–4561

    Article  CAS  Google Scholar 

  • Husain I, Ahmad R, Chandra A, Raza ST, Shukla Y, Mahdi F (2018) Phytochemical characterization and biological activity evaluation of ethanolic extract of Cinnamomum zeylanicum. J Ethnopharmacol 12:110–116

    Article  Google Scholar 

  • Ibrahim B, Sowemimo A, van Rooyen A, Van de Venter M (2012) Antiinflammatory, analgesic and antioxidant activities of Cyathula prostrata (Linn.) Blume (Amaranthaceae). J Ethnopharmacol 141:282–289

    Article  CAS  Google Scholar 

  • Ibrahim H, Aoussar N, Mhand RA, Rhallabi N, Oili AD, Mellouki F (2021) In vitro antioxidant and antistaphylococcal properties of leaf extracts of Ocotea comorensis Kosterm (Lauraceae). Biocatal Agric Biotechnol 31:101892

    Article  CAS  Google Scholar 

  • Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkar VC (2017) Phytochemicals: extraction methods, identification and detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem 6:32–36

    CAS  Google Scholar 

  • Irshad M, Ahmad I, Mehdi SJ, Goel HC, Rizvi MMA (2014) Antioxidant capacity and phenolic content of the aqueous extract of commonly consumed cucurbits. Int J Food Prop 17:179–186

    Article  CAS  Google Scholar 

  • Ishitaq S, Ahmad M, Hanif U, Akbar S, Mehjabeen, Kamran SH (2014) Phytochemical and in-vitro antioxidant evaluation of different fractions of Amaranthus graecizans subsp. Silvestris Vill. Brenan. Asian Pac J Trop Biomed 7:S342–S347

    Article  Google Scholar 

  • Ishtiaq S, Ahmad M, Hanif U, Akbar S, Kamran SH (2014) Phytochemical and in-vitro antioxidant evaluation of different fractions of Amaranthus graecizans subsp. Silvestris Vill. Brenan. Asian Pac J Trop Biomed 412:965–971

    Google Scholar 

  • Ittiyavirah SP, George A, Santhosh AM, Kurian ST, Pappachan P, Jacob G (2013) Studies of cytotoxic potential of Cucumis melo. Linn fruit aqueous extract in prostate cancer cell lines PC-3 using MTT and Neutral red assay. Iran J Pharmacol Ther 12:24

    Google Scholar 

  • Jamalova DN, Gad HA, Akramov DK, Tojibaev KS, Musayeib NM, Ashour ML, Mamadalieva NZ (2021) Discrimination of the essential oils obtained from four Apiaceae species using multivariate analysis based on the chemical compositions and their biological activity. Plants 10:1529. https://doi.org/10.3390/plants10081529

    Article  Google Scholar 

  • Jayaprakasam B, Seeram NP, Nair MG (2003) Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett 189:11–16

    Article  CAS  Google Scholar 

  • Jerković I, Mastelić J, Miloš M (2001) The impact of both the season of collection and drying on the volatile constituents of Origanum vulgare L. ssp. hirtum grown wild in Croatia. Int J Food Sci 36:649–654

    Article  Google Scholar 

  • Jimoh MO, Afolayan AJ, Lewu FB (2020) Toxicity and antimicrobial activities of Amaranthus caudatus L.(Amaranthaceae) harvested from formulated soils at different growth stages. J Evid Based Integr Med 25:11

    Article  Google Scholar 

  • Kabbashi JS, Koko WS, Mohammed SEA, Musa N, Osman EE, Dahab MM, Allah EFF, Mohammed AK (2014) In vitro amoebicidal, antimicrobial and antioxidant activities of the plants Adansonia digitata and Cucurbit maxima. Adv Med Plant Res 2:50–57

    Google Scholar 

  • Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986

    Article  CAS  Google Scholar 

  • Kamdem JP, Adeniran A, Boligon AA, Klimaczewski CV, Elekofehinti OO, Hassan W, Ibrahim M, Waczuk EM, Meinerz DF, Athayde ML (2013) Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: its potential role in neuroprotection. Ind Crop Prod 51:26–34

    Article  CAS  Google Scholar 

  • Karamać M, Gai F, Longato E, Meineri G, Janiak MA, Amarowicz R, Peiretti PG (2019) Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 8:173. https://doi.org/10.3390/antiox8060173

    Article  CAS  Google Scholar 

  • Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2:32–50

    Article  CAS  Google Scholar 

  • Khodaei M, Amanzadeh Y, Faramarzi MA, Pirali-Hamedani M (2019) Cholinesterase inhibitory, anti-oxidant and anti-tyrosinase activities of three Iranian species of Dracocephalum. Res J Pharmacogn Phytochem 6:25–31

    CAS  Google Scholar 

  • Khoury M, El Beyrouthy M, Eparvier V, Ouaini N, Stien D (2018) Chemical diversity and antimicrobial activity of the essential oils of four Apiaceae species growing wild in Lebanon. J Essent Oil Res 30:25–31

    Article  Google Scholar 

  • Kobori M, Nakayama H, Fukushima K, Ohnishi-Kameyama M, Ono H, Fukushima T, Akimoto Y, Masumoto S, Yukizaki C, Hoshi Y, Deguchi T, Yoshida M (2008) Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. J Agric Food Chem 56:4004–4011

    Article  CAS  Google Scholar 

  • Koolen HH, Pral EM, Alfieri SC, Marinho JV, Serain AF, Hernández-Tasco AJ, Salvador MJ, Andreazza N (2017) Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis. Phytochemistry 134:106–113

    Article  CAS  Google Scholar 

  • Kormin SB (2005) The effect of heat processing on triterpene glycosides and antioxidant activity of herbal pegaga (Centella asiatica L. urban) drink. Master of Engineering (Bioprocess) Thesis, Faculty of Chemical and Natural Resources Engineering, University of Technology Malaysia

    Google Scholar 

  • Kot B, Wierzchowska K, Piechota M, Czerniewicz P, Chrzanowski G (2019) Antimicrobial activity of five essential oils from lamiaceae against multidrug-resistant Staphylococcus aureus. Nat Prod Res 33:3587–3591

    Article  CAS  Google Scholar 

  • Krawinkel MB, Keding GB (2006) Bitter gourd (Momordica charantia): a dietary approach to hyperglycemia. Nutr Rev 74:331–337

    Article  Google Scholar 

  • Krithika N, Arumugasamy K (2018) In vitro antioxidant and anti-inflammatory activity of hydrocotyle Javanica thumb (Apiaceae). World J Pharm Res 7:171–179

    Google Scholar 

  • Ksouri A, Dob T, Belkebir A, Dahmane D, Nouasri A (2017) Volatile compounds and biological activities of aerial parts of Pituranthos scoparius (Coss and Dur) Schinz (Apiaceae) from Hoggar, southern Algeria. Trop J Pharm Res 16:51–58

    Article  CAS  Google Scholar 

  • Kulisic T, Radonic A, Milos M (2005) Antioxidant properties of thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) essential oils. Ital J Food Sci 17:315

    CAS  Google Scholar 

  • Kumar Semwal D, Badoni Semwal R (2013) Ethnobotany, pharmacology and phytochemistry of the genus Phoebe (Lauraceae). Mini Rev Org Chem 10:12–26

    Article  Google Scholar 

  • Kumar A, Partap S, Sharma NK, Jha KK (2012) Phytochemical, ethnobotanical and pharmacological profile of Lagenaria siceraria: a review. J Pharmacogn Phytochem 1:24–31

    CAS  Google Scholar 

  • Kumar RP, Jindal S, Gupta N, Rana R (2014) An inside review of Amaranthus spinosus Linn: a potential medicinal plant of India. Int J Res Pharm 4:643–653

    Google Scholar 

  • Küpeli E, Tosun A, Yesilada E (2006) Anti-inflammatory and antinociceptive activities of Seseli L. species (Apiaceae) growing in Turkey. J Ethnopharmacol 104:310–314

    Article  Google Scholar 

  • Lagudu MN, Owk AK (2018) Litsea glutinosa (Lauraceae): evaluation of its foliar phytochemical constituents for antimicrobial activity. Not Sci Biol 10:21–25

    Article  Google Scholar 

  • Lai Y, Liu T, Sa R, Wei X, Xue Y, Wu Z, Luo Z, Xiang M, Zhang Y, Yao G (2015) Neolignans with a rare 2-oxaspiro [4.5] deca-6, 9-dien-8-one motif from the stem bark of Cinnamomum subavenium. J Nat Prod 78:1740–1744

    Article  CAS  Google Scholar 

  • Lalee A, Pal P, Bhattacharaya B, Samanta A (2012) Evaluation of anticancer activity of Aerva sanguinolenta (l.) (Amaranthaceae) on Ehrlich’s ascites cell induced Swiss mice. Int J Drug Dev Res 4:203–209

    Google Scholar 

  • Li HB, Wong CC, Cheng KW, Chen F (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT Food Sci Technol 41:385–390

    Article  CAS  Google Scholar 

  • Lin JT, Chen YC, Lee YC, Hou Rolis CW, Chen FL, Yang DJ (2012) Antioxidant, anti-proliferative and cyclooxygenase-2 inhibitory activities of ethanolic extracts from lemon balm (Melissa officinalis L.) leaves. LWT Food Sci Technol 49:1–7

    Article  CAS  Google Scholar 

  • Liu YH, Tsai KD, Yang SM, Wong HY, Chen TW, Cherng J, Cherng JM (2017) Cinnamomum verum ingredient 2-methoxycinnamaldehyde: a new antiproliferative drug targeting topoisomerase I and II in human lung squamous cell carcinoma NCI-H520 cells. Eur J Cancer Prev 26:314–323

    Article  Google Scholar 

  • Lopez-Mejía OA, Lopez-Malo A, Palou E (2014) Antioxidant capacity of extracts from amaranth Amaranthus hypochondriacus L. seeds or leaves. Ind Crop Prod 53:55–59

    Article  Google Scholar 

  • Mada SB, Garba A, Mohammed HA, Muhammad A, Olagunju A (2013) Antimicrobial activity and phytochemical screening of aqueous and ethanol extracts of Momordica charantia L. leaves. J Med Plants Res 7:579–586

    Google Scholar 

  • Maggi F, Barboni L, Papa F, Caprioli G, Ricciutelli M, Sagratini G, Vittori S (2012) A forgotten vegetable (Smyrnium olusatrum L., Apiaceae) as a rich source of isofuranodiene. Food Chem 135:2852–2862

    Article  CAS  Google Scholar 

  • Maiyo ZC, Ngure RM, Matasyoh JC, Chepkorir R (2010) Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr J Biotechnol 9:3178–3182

    Google Scholar 

  • Makopa M, Mangiza B, Banda B, Mozirandi W, Mombeshora M, Mukanganyama S (2020) Antibacterial, antifungal, and antidiabetic effects of leaf extracts from Persea americana Mill. (Lauraceae). Biochem Res Int 2020:8884300. https://doi.org/10.1155/2020/8884300

    Article  CAS  Google Scholar 

  • Maleki Lajayer H, Norouzi R, Shahi-Gharahlar A (2020) Essential oil components, phenolic content and antioxidant activity of Anthriscus cerefolium and Anthriscus sylvestris from Iran. J Hortic Postharvest Res 3:355–366

    Google Scholar 

  • Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M (2020) Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 284:197989. https://doi.org/10.1016/j.virusres.2020.197989

    Article  CAS  Google Scholar 

  • Marinho BM, Fernandes DN, Chicoti MZ, Ribeiro GD, Almeida VG, Santos MG, Guimarães VH, Marchioretto MS, Martins HR, de Melo GE, Gregorio LE (2021) Phytochemical profile and antiproliferative activity of human lymphocytes of Gomphrena virgata Mart.(Amaranthaceae). Nat Prod Res 25:1–7

    Google Scholar 

  • Marino A, Nostro A, Mandras N, Roana J, Ginestra G, Miceli N, Taviano MF, Gelmini F, Beretta G, Tullio V (2020) Evaluation of antimicrobial activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial agents. BMC Complement Med Ther 20:1–11

    Article  Google Scholar 

  • Mathad P, Mety SS (2010) Phytochemical and antimicrobial activity of Digera Muricata (L.) Mart. J Chem 7:275–280

    CAS  Google Scholar 

  • Mathai K (2000) Nutrition in the adult years. In: Mahan LK, Escott-Stump S (eds) Krause’s food, nutrition, and diet therapy, vol 271, 10th edn. Saunders, Philadelphia, pp 274–275

    Google Scholar 

  • Matias D, Nicolai M, Fernandes AS, Saraiva N, Almeida J, Saraiva L, Faustino C, Díaz-Lanza AM, Reis CP, Rijo P (2019) Comparison study of different extracts of Plectranthus madagascariensis, P. neochilus and the rare P. porcatus (Lamiaceae): chemical characterization, antioxidant, antimicrobial and cytotoxic activities. Biomolecules 9:179–192

    Article  CAS  Google Scholar 

  • Mengie T, Mequanente S, Nigussie D, Legesse B, Makonnen E (2021) Investigation of wound healing and anti-inflammatory activities of solvent fractions of 80% methanol leaf extract of Achyranthes aspera L. (Amaranthaceae) in rats. J Inflamm Res 14:1775–1787

    Article  Google Scholar 

  • Mhiri R, Koubaa I, Chawech R, Auberon F, Allouche N, Michel T (2020) New isoflavones with antioxidant activity isolated from Cornulaca monacantha. Chem Biodivers 17:e2000758

    Article  CAS  Google Scholar 

  • Mladenova T, Stoyanov P, Denev P, Dimitrova S, Katsarova M, Teneva D, Todorov K, Bivolarska A (2021) Phytochemical composition, antioxidant and antimicrobial activity of the balkan endemic Micromeria frivaldszkyana (Degen) Velen. (Lamiaceae). Plants 10:710

    Article  CAS  Google Scholar 

  • Montesano D, Rocchetti G, Putnik P, Lucini L (2018) Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Curr Opin Food Sci 22:81–87

    Article  Google Scholar 

  • Mulaudzi RB, Ndhlala AR, Finnie JF, Van Staden J (2009) Antimicrobial, anti-inflammatory and genotoxicity activity of Alepidea amatymbica and Alepidea natalensis (Apiaceae). S Afr J Bot 75:584–587

    Article  Google Scholar 

  • Müller K, Borsch T (2005) Phylogenetics of Amaranthaceae based on matK/trnK sequence data: evidence from parsimony, likelihood, and Bayesian analyses. Ann Missouri Bot Gard 92:66–102

    Google Scholar 

  • Naima B, Abdelkrim R, Ouarda B, Salah NN, Larbi BAM (2019) Chemical composition, antimicrobial, antioxidant and anticancer activities of essential oil from Ammodaucus leucotrichus Cosson & Durieu (Apiaceae) growing in South Algeria. Bull Chem Soc Ethiop 33:541–549

    Article  CAS  Google Scholar 

  • Nasrin F, Bulbul IJ, Aktar F, Rashid MA (2015) Anti-inflammatory and antioxidant activities of Cucumis sativus leaves. Bangladesh Pharm J 18:169–173

    Article  Google Scholar 

  • Nomentsoa RZ, Judicael RL, Ranjàna RH, Manampisoa RA, Doll RDA, Louis JV (2021) Chemical composition and antibacterial activities of the essential oils from Ocotea zahamenensis Van Der Werff (Lauraceae). GSC Biol Pharm Sci 16:115–125

    Article  CAS  Google Scholar 

  • Noumedem JAK, Mihasan M, Lacmata ST, Stefan M, Kuiate JR, Kuete V (2013) Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria. BMC Complement Altern Med 13:1–9

    Article  Google Scholar 

  • Okoye-Festus BC, Willfred OO, Felix AO, Ogheneogaga IO, Peace O, Ngozi IN, Jane A, Okechukwu ON (2014) Chemical composition and anti-inflammatory activity of essential oils from the leaves of Ocimum basilicum L. and Ocimum gratissimum L. (Lamiaceae). Int J Pharmacogn 1:59–65

    Google Scholar 

  • Olasehinde GI, Ojurongbe O, Adeyeba AO, Fagade OE, Valecha N, Ayanda IO, Ajayi AA, Egwari LO (2014) In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts. Malar J 13:1–7

    Article  Google Scholar 

  • Omidiani N, Datkhile KD, Barmukh RB (2020) Anticancer potentials of leaf, stem, and root extracts of Achyranthes aspera L. Not Sci Biol 12:546–555

    Article  CAS  Google Scholar 

  • Oyedeji OA, Afolayan AJ (2005) Chemical composition and antibacterial activity of the essential oil of Centella asiatica growing in South Africa. Pharm Biol 43:249–252

    Article  CAS  Google Scholar 

  • Padalia RC, Chanotiya CS, Thakuri BC, Mathela CS (2007) Germacranolide rich essential oil from Neolitsea pallens. Nat Prod Commun 2:1934578X0700200516

    Google Scholar 

  • Padalia RC, Joshi SC, Bisht DS, Mathela CS (2009) Essential oil composition of Persea duthiei. Chem Nat Compd 45:745–747

    Article  CAS  Google Scholar 

  • Palá-Paúl J, Garcı́a-Jiménez R, Pérez-Alonso MJ, Velasco-Negueruela A, Sanz J (2004) Essential oil composition of the leaves and stems of Meum athamanticum Jacq., from Spain. J Chromatogr A 1036:245–247

    Article  Google Scholar 

  • Pandey A, Tripathi S (2014) Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem 2:115–119

    Google Scholar 

  • Pant P, Khulbe K, Pant CC (2018) Essential oil composition and antioxidant, antibacterial activity of leaf extract of Persea odoratissima (NEES). Eur J Biomed Pharm Sci 5:527–536

    Google Scholar 

  • Pereira CAJ, Oliveira LLS, Coaglio AL, Santos FSO, Cezar RSM, Mendes T, Oliveira FLP, Conzensa G, Lima WS (2016) Anti-helminthic activity of Momordica charantia L. against Fasciola hepatica eggs after twelve days of incubation in vitro. Vet Parasitol 228:160–166

    Article  Google Scholar 

  • Pereira RV, Mecenas AS, Malafaia CRA, Amaral ACF, Muzitano MF, Simas NK, Correa Ramos Leal I (2020) Evaluation of the chemical composition and antioxidant activity of extracts and fractions of Ocotea notata (Ness) Mez (Lauraceae). Nat Prod Res 34:3004–3007

    Article  CAS  Google Scholar 

  • Patel E, Krishnamurthy R (2013) A Review on potency of some cucurbitaceae plants against hepatitis and antimicrobial activities. Ind J Fund Appl Life sci 3:13–18

    Google Scholar 

  • Politeo O, Jukic M, Milos M (2007) Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem 101:379–385

    Article  CAS  Google Scholar 

  • Pop A, Muste S, Muresan C, Pop C, Salanta L (2013) Comparative study regarding the importance of sage (Salvia officinalis L.) in terms of antioxidant capacity and antimicrobial activities. Hop Med Plants 21:1–2

    Google Scholar 

  • Rajasree RS, Sibi PI, Francis F, William H (2016) Phytochemicals of Cucurbitaceae family—a review. Int J Pharmacogn Phytochem Res 8:113–123

    Google Scholar 

  • Rajesh R, Chitra K, Paarakh PM, Chidambaranathan N (2011) Anticancer activity of aerial parts of Aerva lanata Linn Juss ex Schult against Dalton’s Ascitic Lymphoma. Eur J Integr Med 3:e245–e250

    Article  Google Scholar 

  • Rana S, Rahman S, Sana S, Biswas TK, Hashem AKM, Parvin S, Mazumder K (2020) Anticancer potential of Chenopodium album leaf extract against Ehrlich ascites carcinoma cells in Swiss albino mice. Future J Pharm Sci 6:1–9

    Google Scholar 

  • Ravi A, Alvala M, Sama V, Kalle AM, Irlapati VK, Reddy BM (2012) Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells. DARU J Pharm Sci 20:1–10

    Article  Google Scholar 

  • Rawat JM, Bhandari A, Mishra S, Rawat B, Dhakad AK, Thakur A, Chandra A (2018) Genetic stability and phytochemical profiling of the in vitro regenerated plants of Angelica glauca Edgew.: an endangered medicinal plant of Himalaya. Plant Cell Tissue Organ Cult 135:111–118

    Article  CAS  Google Scholar 

  • Rjeibi I, Saad AB, Hfaiedh N (2016) Oxidative damage and hepatotoxicity associated with deltamethrin in rats: the protective effects of Amaranthus spinosus seed extract. Biomed Pharmacother 84:853–860

    Article  CAS  Google Scholar 

  • Rodriguez-Garcia A, Hosseini S, Martinez-Chapa SO, Cordell GA (2017) Multi-target activities of selected alkaloids and terpenoids. Mini Rev Org Chem 14:272–279

    Article  CAS  Google Scholar 

  • Rub RA, Pati MJ, Siddiqui AA, Moghe AS, Shaikh NN (2016) Characterization of anticancer principles of Celosia argentea (Amaranthaceae). Pharm Res 8:97–104

    CAS  Google Scholar 

  • Ruwali P, Negi D (2019) Phytochemical analysis and evaluation of antioxidant activity of Premna latifolia Roxb. A medicinal plant (Family: Lamiaceae). Pharma Innov 8:13–20

    CAS  Google Scholar 

  • Saboo SS, Thorat PK, Tapadiya GG, Khadabadi SS (2013) Evaluation of phytochemical and anticancer potential of chloroform extract of Trichosanthes tricuspidata Lour roots (Cucurbitaceae) using in-vitro models. Int J Pharm Sci 5:203–208

    Google Scholar 

  • Sagar R, Dumka VK, Singh NK, Mohindroo J (2021) Anti-inflammatory, antibacterial and acaricidal activities of various leaf extracts of bitter apple, Citrullus colocynthis Schrad (Cucurbitaceae). Toxicol Int 28:1–6

    Google Scholar 

  • Salehi B, Capanoglu E, Adrar N, Catalkaya G, Shaheen S, Jaffer M, Giri L, Suyal R, Jugran AK, Calina D, Docea AO, Kamiloglu S, Kregiel D, Antolak H, Pawlikowska E, Sen S, Acharya K, Selamoglu Z, Sharifi-Rad J, Martorell M, Rodrigues CF, Sharopov F, Martins N, Capasso R (2019) Cucurbits plants: a key emphasis to its pharmacological potential. Molecules 24:1854

    Article  CAS  Google Scholar 

  • Salleh WM, Ahmad F (2017) Phytochemistry and biological activities of the genus Ocotea (Lauraceae): a review on recent research results. J Appl Pharm Sci 7:204–218

    CAS  Google Scholar 

  • Salvador MJ, Dias DA (2004) Flavone C-glycosides from Alternanthera maritima (Mart.) St. Hil. (Amaranthaceae). Biochem Syst Ecol 1:107–110

    Article  Google Scholar 

  • Sandhya S, Sai KP, Vinod KR, Banji D, Kumar K, Rajeshwar T (2012) In ova angiogenesis analgesic and anti inflammatory potency of Aerva monsoniae (Amaranthaceae). Asian Pac J Trop Dis 2:385–389

    Article  Google Scholar 

  • Santos KKA, Matias EFF, Sobral-Souza CE, Tintino SR, Morais-Braga MFB, Guedes GMM, Santos FAV, Sousa ACA, Rolon M, Vega C, Arias AR, Costa JGM, Menezes IRA, Coutinho HDM (2012) Trypanocide, cytotoxic, and antifungal activities of Momordica charantia. Pharm Biol 50:162–166

    Article  Google Scholar 

  • Sarikahya NB, Nalbantsoy A, Top H, Gokturk RS, Sumbul H, Kirmizigul S (2018) Immunomodulatory, hemolytic and cytotoxic activity potentials of triterpenoid saponins from eight Cephalaria species. Phytomedicine 38:135–144

    Article  CAS  Google Scholar 

  • Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1:168–182

    Google Scholar 

  • Sayed-Ahmad B, Talou T, Saad Z, Hijazi A, Merah O (2017) The Apiaceae: ethnomedicinal family as source for industrial uses. Ind Crop Prod 109:661–671

    Article  CAS  Google Scholar 

  • Shah H, Khan AA (2017) Phytochemical characterisation of an important medicinal plant, Chenopodium ambrosioides Linn. Nat Prod Res 31:2321–2324

    Article  CAS  Google Scholar 

  • Shanaida M, Hudz N, Korzeniowska K, Wieczorek P (2018) Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species. Int J Green Pharm 12:200–204

    CAS  Google Scholar 

  • Shanaida M, Hudz N, Białoń M, Kryvtsowa M, Svydenko L, Filipska A, Wieczorek PP (2021) Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J Biol Sci 28:6145–6152

    Article  CAS  Google Scholar 

  • Silva EM, Souza JNS, Rogez H, Rees JF, Larondelle Y (2007) Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem 101:1012–1018

    Article  CAS  Google Scholar 

  • Silva AFG, Pezenti L, Abel MCN, Yunes RVF (2019) Antioxidant activity and quantification of phenols, flavonoids and total tannins of Cinnamomum triplinerve (Lauraceae). Ciência e Natura 41:34

    Article  Google Scholar 

  • Silva AF, Santos MF, Maiolini TS, Salem PP, Murgu M, Paula AC, Silva EO, Nicacio KJ, Ferreira AG, Dias DF, Soares MG, Chagas-Paula DA (2021) Chemistry of leaves, bark, and essential oils from Ocotea diospyrifolia and anti-inflammatory activity–dual inhibition of edema and neutrophil recruitment. Phytochem Lett 42:52–60

    Article  CAS  Google Scholar 

  • Simpson MG (2010) Plant systematics. Academic, London, UK, pp 301–302

    Google Scholar 

  • Singh J, Singh V, Shukla S, Rai AK (2016) Phenolic content and antioxidant capacity of selected cucurbit fruits extracted with different solvents. J Nutr Food Sci 6:1–8

    Google Scholar 

  • Sood A, Kaur P, Gupta R (2012) Phytochemical screening and antimicrobial assay of various seeds extract of Cucurbitaceae family. Int J Appl Biol Pharm 3:401–409

    Google Scholar 

  • Souza-Junior FJ, Luz-Moraes D, Pereira FS, Barros MA, Fernandes LM, Queiroz LY, Maia CF, Maia JG, Fontes-Junior EA (2020) Aniba canelilla (Kunth) mez (Lauraceae): a review of ethnobotany, phytochemical, antioxidant, anti-inflammatory, cardiovascular, and neurological properties. Front Pharmacol 11:699

    Article  CAS  Google Scholar 

  • Stanković NS, Mihajilov-Krstev T, Zlatković B, Stankov-Jovanović V, Kocić B, Čomić L (2020) Antibacterial and antioxidant activity of wild-growing Angelica species (Apiaceae) from Balkan Peninsula against human pathogenic bacteria: ‘in honor of famous natural historian Dr Josif Pančić (1814–1888)’. J Essent Oil Res 32:464–473

    Article  Google Scholar 

  • Stanojević D, Čomić LJ, Stefanović O, Solujić S, Sukdolak SS (2010) In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives. Span J Agric Res 8:109–115. https://doi.org/10.5424/sjar/2010081-1149

    Article  Google Scholar 

  • Stević T, Berić T, Šavikin K, Soković M, Gođevac D, Dimkić I, Stanković S (2014) Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind Crop Prod 55:116–122. https://doi.org/10.1016/j.indcrop.2014.02.011

    Article  CAS  Google Scholar 

  • Subbarayan PR, Sarkar M, Impellizzeri S, Raymo F, Lokeshwar BL, Kumar P, Ardalan B (2010) Anti-proliferative and anti-cancer properties of Achyranthes aspera: specific inhibitory activity against pancreatic cancer cells. J Ethnopharmacol 131:78–82

    Article  Google Scholar 

  • Sulaiman SF, Ooi KL, Supriatno (2013) Antioxidant and α-glucosidase inhibitory activities of cucurbit fruit vegetables and identification of active and major constituents from phenolic-rich extracts of Lagenaria siceraria and Sechium edule. J Agric Food Chem 61:10080–10090

    Article  CAS  Google Scholar 

  • Tahir M, Khushtar M, Fahad M, Rahman MA (2018) Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.). J Appl Pharm Sci 8:132–140

    Article  CAS  Google Scholar 

  • Takaku S, Haber WA, Setzer WN (2007) Leaf essential oil composition of 10 species of Ocotea (Lauraceae) from Monteverde, Costa Rica. Biochem Syst Ecol 35:525–532

    Article  CAS  Google Scholar 

  • Trapp MA, Kai M, Mithöfer A, Rodrigues-Filho E (2015) Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochemistry 110:72–82

    Article  CAS  Google Scholar 

  • Tsimogiannis D, Choulitoudi E, Bimpilas A, Mitropoulou G, Kourkoutas Y, Oreopoulou V (2017) Exploitation of the biological potential of Satureja thymbra essential oil and distillation by-products. J Appl Res Med Aromat Plants 4:12–20

    Google Scholar 

  • Tundis R, Loizzo MR, Bonesi M, Menichini F, Statti GA, Menichini F (2014) In vitro cytotoxic activity of Salsola oppositifolia Desf. (Amaranthaceae) in a panel of tumour cell lines. Z Naturforsch 63:347–354

    Article  Google Scholar 

  • Uddin MN, Alam T, Islam MA, Khan TA, Zaman RU, Azam S, Karnal AM, Jakaria M (2020) Evaluation of carbon tetrachloride fraction of Actinodaphne angustifolia Nees (Lauraceae) leaf extract for antioxidant, cytotoxic, thrombolytic and antidiarrheal properties. Biosci Rep 40:BSR20201110. https://doi.org/10.1042/BSR20201110

    Article  CAS  Google Scholar 

  • Ukwuani AN, Abubakar MG, Hassan SW, Agaie BM (2013) Antinociceptive activity of hydromethanolic extract of some medicinal plants in mice. Int J Pharm Photon 104:120–125

    Google Scholar 

  • Usman JG, Sodipo OA, Sandabe UK (2014) In vitro antimicrobial activity of Cucumis metuliferus E. Mey. Ex. naudin fruit extracts against Salmonella gallinarum. Int J Phytomed 6:268–274

    Google Scholar 

  • Velescu BS, Anuţa V, Nițulescu GM, Olaru OT, Orțan A, Ionescu D, Ghica MV, Drăgoi CM, Dinu Pîrvu CE (2017) Pharmaceutical assessment of Romanian crops of Anthriscus sylvestris (apiaceae). Farmacia 65:824–831

    CAS  Google Scholar 

  • Vella FM, Cautella D, Laratta B (2019) Characterization of polyphenolic compounds in cantaloupe melon by-products. Foods 8:196. https://doi.org/10.3390/foods8060196

    Article  CAS  Google Scholar 

  • Velu G, Palanichamy V, Rajan AP (2018) Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: Mohana Roopan S, Madhumitha G (eds) Bioorganic phase in natural food: an overview. Springer, Cham, pp 135–156

    Chapter  Google Scholar 

  • Verma RS, Padalia RC, Chanotiya CS, Chauhan A (2010) Chemical investigation of the essential oil of Thymus linearis (Benth. ex Benth) from western Himalaya, India. Nat Prod Res 24:1890–1896

    Article  CAS  Google Scholar 

  • Vidal LMT, Bezerra BP, de Fonseca JC, Mallmann ASV, de Sousa FCF, Barbosa-Filho JM, Ayala AP (2020) Polymorphism in natural alkamides from Aniba riparia (Nees) Mez (lauraceae). CrystEngComm 22:7607–7616

    Article  CAS  Google Scholar 

  • Villalva M, Santoyo S, Salas-Pérez L, Siles-Sánchez MD, Rodríguez García-Risco M, Fornari T, Reglero G, Jaime L (2021) Sustainable extraction techniques for obtaining antioxidant and anti-inflammatory compounds from the lamiaceae and asteraceae species. Foods 10:2067. https://doi.org/10.3390/foods10092067

    Article  CAS  Google Scholar 

  • Vincken JP, Heng L, Groot A, Gruppen (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297

    Article  CAS  Google Scholar 

  • Volpato L, Gabardo MCL, Leonardi DP, Tomazinho PH, Maranho LT, Baratto-Filho F (2017) Effectiveness of Persea major Kopp (Lauraceae) extract against Enterococcus faecalis: a preliminary in vitro study. BMC Res Notes 10:1–6

    Article  Google Scholar 

  • Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W (2013) Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind Crop Prod 44:566–571

    Article  CAS  Google Scholar 

  • Wehner TC, Maynard DN (2003) Introduction to cucumber, melons, and watermelon. pp 14–21

    Google Scholar 

  • Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops: a review. Ultrason Sonochem 48:538–549

    Article  CAS  Google Scholar 

  • Widelski J, Graikou K, Ganos C, Skalicka-Wozniak K, Chinou I (2021) Volatiles from selected apiaceae species cultivated in Poland—antimicrobial activities. Process 9:695

    Article  CAS  Google Scholar 

  • Wong HY, Tsai KD, Liu YH, Yang SM, Chen TW, Cherng J, Chou KS, Chang CM, Yao BT, Cherng JM (2016) Cinnamomum verum component 2-methoxycinnamaldehyde: a novel anticancer agent with both anti-topoisomerase I and II activities in human lung adenocarcinoma a549 cells in vitro and in vivo. Phytother Res 30:331–340

    Article  CAS  Google Scholar 

  • Wu Q, Wang Y, Guo M (2011) Triterpenoid saponins from the seeds of Celosia argentea and their anti-inflammatory and antitumor activities. Chem Pharm Bull 59:666–671

    Article  CAS  Google Scholar 

  • Wu L, Xiong W, Hu JW, Wu J, Li ZJ, Gao Y, Liu D, Liu Y, Liu W, Liang M, Si CL, Bae YS (2019) Secondary metabolites from the twigs of Cinnamomum camphora. Chem Nat Compd 55:345–347

    Article  CAS  Google Scholar 

  • Yahia IBH, Jaouadi R, Trimech R, Boussaid M, Zaouali Y (2019) Variation of chemical composition and antioxidant activity of essential oils of Mentha x rotundifolia (L.) Huds. (Lamiaceae) collected from different bioclimatic areas of Tunisia. Biochem Syst Ecol 84:8–16

    Article  Google Scholar 

  • Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X (2020) Advances in pharmacological activities of terpenoids. Nat Prod Commun 15. https://doi.org/10.1177/1934578X20903555

  • Yao Y, Yang X, Shi Z, Ren G (2014) Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J Food Sci 79:H1018–H1023

    Article  CAS  Google Scholar 

  • Yeskaliyeva B, Mesaik MA, Abbaskhan A, Kulsoom A, Burasheva GS, Abilov ZA, Choudhary MI, Atta-ur-Rahman (2006) Bioactive flavonoids and saponins from Climacoptera obtusifolia. Phytochemistry 67:2392–2397

    Article  CAS  Google Scholar 

  • Zeljković SĆ, Topčagić A, Požgan F, Štefane B, Tarkowski P, Maksimović M (2015) Antioxidant activity of natural and modified phenolic extracts from Satureja montana L. Ind Crop Prod 76:1094–1099

    Article  Google Scholar 

  • Zengin G, Mahomoodally MF, Paksoy MY, Picot-Allain C, Glamocilja J, Sokovic M, Diuzheva A, Jeko J, Cziaky Z, Rodrigues MJ, Sinan KI, Custodio L (2019) Phytochemical characterization and bioactivities of five Apiaceae species: natural sources for novel ingredients. Ind Crop Prod 135:107–121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Council of Scientific and Industrial Research (CSIR) for providing funds (MLP-201). V.J. also thanks the Science and Engineering Research Board (SERB) for the Early Career Research Award and Department of Science and Technology (DST) for the INSPIRE faculty award. HG and PK thank CSIR for the Junior Research Fellowship. CSIR-IHBT communication number is 5025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gangwar, H., Kumari, P., Jaiswal, V. (2022). Phytochemically Rich Medicinally Important Plant Families. In: Swamy, M.K., Kumar, A. (eds) Phytochemical Genomics. Springer, Singapore. https://doi.org/10.1007/978-981-19-5779-6_2

Download citation

Publish with us

Policies and ethics