Skip to main content

Microbial Biopolymers and Enzymes Involved in the Biosynthesis of PHAs

  • Chapter
  • First Online:
Biodegradable Polymer-Based Food Packaging

Abstract

Biopolymers are natural alternatives for synthetic polymers which can be obtained from natural sources and represent themselves as sustainable solution for nondegradable plastic. Biopolymers are plastic-like substances obtained from organic sources that have applications in the development of reliable, nontoxic, but degradable packaging materials. Organic sources of hydrocolloids, polysaccharides, lipids, and protein have been used to extract biopolymers. However, recently microbial production of biopolymers has received much attention. Polyhydroxyalkanoates (PHAs) are intracellular granules produced by certain microorganisms under nutrient stress. Several bacterial species (Cupriavidus necator, Pseudomonas stutzeri, P. oleovorans, P. aeruginosa, and Bacillus megaterium) and many fungal and algal species are known for PHA production. Structural and regulatory genes for PHA synthesis are present in an operon in producing microorganisms with slight differences. PHAs have many applications in various industrial sectors such as food, agriculture, and pharmaceuticals. PHA can be exploited in several ways like biofuel generation as well as can be used in packaging material.

This chapter provides a comprehensive information of biopolymers and their composites, microbial biopolymers, and main biosynthetic pathways used for PHA production. Important aspects of PHAs, its biosynthesizing genes, and their relevant proteins have also been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adilah AN, Jamilah B, Noranizan MA, Hanani ZN (2018) Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag Shelf Life 16:1–7

    Article  Google Scholar 

  • Aly MM, Tork S, Qari HA, Al-Seeni MN (2015) Poly-A3/4-hydroxy butyrate depolymerase from Streptomyces lydicus MM10, isolated from wastewater sample. Int J Agric Biol 17(5):891–900

    Article  CAS  Google Scholar 

  • Anburajan P, Kumar AN, Sabapathy PC, Kim GB, Cayetano RD, Yoon JJ et al (2019) Polyhydroxy butyrate production by Acinetobacter junii BP25, Aeromonas hydrophila ATCC 7966, and their co-culture using a feast and famine strategy. Bioresour Technol 293:122062

    Article  CAS  PubMed  Google Scholar 

  • Anis SNS, Nurhezreen MI, Sudesh K, Amirul AA (2012) Enhanced recovery and purification of P (3HB-co-3HHx) from recombinant Cupriavidus necator using alkaline digestion method. Appl Biochem Biotechnol 167(3):524–535

    Article  CAS  PubMed  Google Scholar 

  • Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174

    Article  CAS  PubMed  Google Scholar 

  • Aydogdu A, Sumnu G, Sahin S (2019) Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym 208:241–250

    Article  CAS  PubMed  Google Scholar 

  • Azizi N, Najafpour G, Younesi H (2017) Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol 101:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Cassuriaga APA, Freitas BCB, Morais MG, Costa JAV (2018) Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses. Bioresour Technol 265:456–463

    Article  CAS  PubMed  Google Scholar 

  • Cazón P, Vázquez M (2020) Bacterial cellulose as a biodegradable food packaging material: a review. Food Hydrocoll 113:106530

    Article  Google Scholar 

  • Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148

    Article  Google Scholar 

  • Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S (2019) PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Appl Microbiol Biotechnol 103(3):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Plastics from bacteria. Springer, Berlin, pp 17–37

    Chapter  Google Scholar 

  • Chuah JA, Yamada M, Taguchi S, Sudesh K, Doi Y, Numata K (2013) Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym Degrad Stab 98(1):331–338

    Article  CAS  Google Scholar 

  • Costa SS, Miranda AL, Andrade BB, de Jesus Assis D, Souza CO, de Morais MG et al (2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116:552–562

    Article  CAS  PubMed  Google Scholar 

  • Cruz MV, Paiva A, Lisboa P, Freitas F, Alves VD, Simões P et al (2014) Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour Technol 157:360–363

    Article  CAS  PubMed  Google Scholar 

  • de Almeida A, Catone MV, Rhodius VA, Gross CA, Pettinari MJ (2011) Unexpected stress-reducing effect of PhaP, a poly (3-hydroxybutyrate) granule-associated protein, in Escherichia coli. Appl Environ Microbiol 77(18):6622–6629

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinjaski N, Prieto MA (2013) Swapping of phasin modules to optimize the in vivo immobilization of proteins to medium-chain-length polyhydroxyalkanoate granules in Pseudomonas putida. Biomacromolecules 14(9):3285–3293

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi Y, Peighambardoust SJ, Peighambardoust SH, Karkaj SZ (2019) Development of antibacterial carboxymethyl cellulose-based nanobiocomposite films containing various metallic nanoparticles for food packaging applications. J Food Sci 84(9):2537–2548

    Article  CAS  PubMed  Google Scholar 

  • Galán B, Dinjaski N, Maestro B, De Eugenio LI, Escapa IF, Sanz JM et al (2011) Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 79(2):402–418

    Article  PubMed  Google Scholar 

  • Göksen G, Fabra MJ, Pérez-Cataluña A, Ekiz HI, Sanchez G, López-Rubio A (2021) Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packag Shelf Life 27:100613

    Article  Google Scholar 

  • Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605

    Article  CAS  Google Scholar 

  • Guo W, Duan J, Geng W, Feng J, Wang S, Song C (2013) Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity. Microbiol Res 168(4):231–237

    Article  CAS  PubMed  Google Scholar 

  • Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H (2010) A novel subtype of PHA synthases with homology to bacterial type III synthases is widely distributed in halophilic archaea. Appl Environ Microbiol

    Google Scholar 

  • Ibrahim MI, Alsafadi D, Alamry KA, Hussein MA (2021) Properties and applications of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites. J Polym Environ 29:1010–1030

    Article  CAS  Google Scholar 

  • Jahangir-Esfahani H, Shahabi-Ghahfarrokhi I, Pourata R (2020) Photochemical modification of starch-oleic acid composite as a biodegradable film in food packaging. Iran J Biosyst Eng 51(3):643–654

    Google Scholar 

  • Jain R, Tiwari A (2015) Biosynthesis of planet friendly bioplastics using renewable carbon source. J Environ Health Sci Eng 13(1):1–5

    Article  Google Scholar 

  • Jiang X, Ramsay JA, Ramsay BA (2006) Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J Microbiol Methods 67(2):212–219

    Article  CAS  PubMed  Google Scholar 

  • Kabir SF, Sikdar PP, Haque B, Bhuiyan MR, Ali A, Islam MN (2018) Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Progr Biomater 7(3):153–174

    Article  CAS  Google Scholar 

  • Keskin G, Kızıl G, Bechelany M, Pochat-Bohatier C, Öner M (2017) Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum-based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl Chem 89(12):1841–1848

    Article  CAS  Google Scholar 

  • Khalil HA, Banerjee A, Saurabh CK, Tye YY, Suriani AB, Mohamed A et al (2018) Biodegradable films for fruits and vegetables packaging application: preparation and properties. Food Eng Rev 10(3):139–153

    Article  Google Scholar 

  • Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z (2021) Waste to bioplastics: how close are we to sustainable polyhydroxyalkanoates production? Waste Manag 119:374–388

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Bona R, Chiellini E, Braunegg G (2013) Extraction of short-chain-length poly-[(R)-hydroxyalkanoates](scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol Lett 35(7):1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Shukla A, Baul PP, Mitra A, Halder D (2018a) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178–184

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018b) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Madan S, Bariha N, Suresh S (2020) Swelling and shrinking behavior of modified starch biopolymer with iron oxide. Starch-Stärke, 2000108

    Google Scholar 

  • Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634

    Article  Google Scholar 

  • Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65

    Article  CAS  PubMed  Google Scholar 

  • Leong YK, Show PL, Lan JCW, Loh HS, Yap YJ, Ling TC (2017) Extraction and purification of polyhydroxyalkanoates (PHAs): application of thermoseparating aqueous two-phase extraction. J Polym Res 24(10):1–10

    Article  CAS  Google Scholar 

  • Liu CH, Chen HY, Chen YLL, Sheu DS (2021) The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short-and medium-chain-length PHA. Enzym Microb Technol 143:109719

    Article  CAS  Google Scholar 

  • Lodhi AF, Hasan F, Shah Z, Hameed A, Faisal S, Shah AA (2011) Optimization of culture conditions for the production of poly (3-hydroxybutyrate) depolymerase from newly isolated Aspergillus fumigatus from soil. Pak J Bot 43:1361–1372

    CAS  Google Scholar 

  • Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77–96

    Article  Google Scholar 

  • Meng DC, Chen GQ (2017) Synthetic biology of polyhydroxyalkanoates (PHA). Synthetic biology–metabolic engineering, pp 147–174

    Google Scholar 

  • Mezzolla V, D’Urso OF, Poltronieri P (2018) Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymers 10(8):910

    Article  PubMed Central  Google Scholar 

  • Muhammadi S, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8(3–4):56–77

    Article  Google Scholar 

  • Muneer F, Rasul I, Azeem F, Siddique MH, Zubair M, Nadeem H (2020) Microbial polyhydroxyalkanoates (PHAs): efficient replacement of synthetic polymers. J Polym Environ 28:2301–2323

    Article  CAS  Google Scholar 

  • Murugan P, Han L, Gan CY, Maurer FH, Sudesh K (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Arauz AO, Aguilar-Rabiela AE, Vargas-Torres A, Rodríguez-Hernández AI, Chavarría-Hernández N, Vergara-Porras B, López-Cuellar MR (2019) Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packag Shelf Life 20:100297

    Article  Google Scholar 

  • Pérez-Gago MB, Rhim JW (2014) Edible coating and film materials: lipid bilayers and lipid emulsions. In: Innovations in food packaging. Academic, pp 325–350

    Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  CAS  Google Scholar 

  • Poblete-Castro I, Binger D, Oehlert R, Rohde M (2014) Comparison of mcl-poly (3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol 14(1):1–11

    Article  Google Scholar 

  • Prasanna NS (2020) Scope of cellulose nanotechnology in biodegradable food packaging. fmtmagazine.in

    Google Scholar 

  • Qamar SA, Asgher M, Bilal M, Iqbal HM (2020) Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625

    Article  PubMed  Google Scholar 

  • Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56

    Article  CAS  Google Scholar 

  • Reddy MV, Mohan SV (2012) Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. Bioresour Technol 114:573–582

    Article  Google Scholar 

  • Reddy MV, Yajima Y, Mawatari Y, Hoshino T, Chang YC (2015) Degradation and conversion of toxic compounds into useful bioplastics by Cupriavidus sp. CY-1: relative expression of the PhaC gene under phenol and nitrogen stress. Green Chem 17(9):4560–4569

    Article  Google Scholar 

  • Reddy MV, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang YC (2017) Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. Bioresour Technol 234:99–105

    Article  Google Scholar 

  • Reddy MV, Watanabe A, Onodera R, Mawatari Y, Tsukiori Y, Watanabe A et al (2020) Polyhydroxyalkanoates (PHA) production using single or mixture of fatty acids with Bacillus sp. CYR1: identification of PHA synthesis genes. Bioresour Technol Rep 11:100483

    Article  Google Scholar 

  • Roy S, Rhim JW (2021) Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 61(14):2297–2325

    Article  CAS  PubMed  Google Scholar 

  • Sawant SS, Salunke BK, Kim BS (2015) Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresour Technol 194:247–255

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Manepalli PH, Thatte A, Thomas S, Kalarikkal N, Alavi S (2017) Biodegradable starch/PVOH/laponite RD-based bionanocomposite films coated with graphene oxide: preparation and performance characterization for food packaging applications. Colloid Polym Sci 295(9):1695–1708

    Article  CAS  Google Scholar 

  • Souza AG, Ferreira RR, Paula LC, Mitra SK, Rosa DS (2021) Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag Shelf Life 27:100615

    Article  CAS  Google Scholar 

  • Srivastava SK, Tripathi AD (2013) Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation. 3 Biotech 3(5):389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syafiq R, Sapuan SM, Zuhri MYM, Ilyas RA, Nazrin A, Sherwani SFK, Khalina A (2020) Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: a review. Polymers 12(10):2403

    Article  CAS  PubMed Central  Google Scholar 

  • Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int J Biol Macromol 45(4):372–376

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AD, Raj Joshi T, Kumar Srivastava S, Darani KK, Khade S, Srivastava J (2019) Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging. Prep Biochem Biotechnol 49(6):567–577

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AD, Sebstraien S, Maurya KK, Srivastava SK (2020) Role of polyhydroxyalkanoates (PHA-biodegradable polymer) in food packaging

    Google Scholar 

  • Tripathi AD, Paul V, Agarwal A, Sharma R, Hashempour-Baltork F, Rashidi L, Darani KK (2021) Production of polyhydroxyalkanoates using dairy processing waste-a review. Bioresour Technol 326:124735

    Article  Google Scholar 

  • Tsuge T (2016) Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym J 48(11):1051–1057

    Article  CAS  Google Scholar 

  • Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99(15):6231–6240

    Article  CAS  PubMed  Google Scholar 

  • Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chung A, Chen GQ (2017) Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Healthc Mater 6(7):1601017

    Article  Google Scholar 

  • Xie J, Hung YC (2018) UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. LWT 96:307–314

    Article  CAS  Google Scholar 

  • Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139

    Article  CAS  Google Scholar 

  • Yang X, Li S, Jia X (2020) A four-microorganism three-step fermentation process for producing medium-chain-length polyhydroxyalkanoate from starch. 3. Biotech 10(8):1–9

    Google Scholar 

  • Yeo JCC, Muiruri JK, Thitsartarn W, Li Z, He C (2018) Recent advances in the development of biodegradable PHB-based toughening materials: approaches, advantages and applications. Mater Sci Eng C 92:1092–1116

    Article  CAS  Google Scholar 

  • Zhao L, Han D, Yin Z, Bao M, Lu J (2019) Biohydrogen and polyhydroxyalkanoate production from original hydrolyzed polyacrylamide-containing wastewater. Bioresour Technol 287:121404

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sun H, Yang B, Weng Y (2020) Hemicellulose-based film: potential green films for food packaging. Polymers 12(8):1775

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhaya Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, C., Rai, S., Tripathi, A.D., Rai, D.C. (2022). Microbial Biopolymers and Enzymes Involved in the Biosynthesis of PHAs. In: Dutt Tripathi, A., Darani, K.K., Rai, D.C., Paul, V. (eds) Biodegradable Polymer-Based Food Packaging. Springer, Singapore. https://doi.org/10.1007/978-981-19-5743-7_8

Download citation

Publish with us

Policies and ethics