Skip to main content

Monitoring During Anaesthesia in the Newborn and Neonate

  • Chapter
Clinical Anesthesia for the Newborn and the Neonate
  • 696 Accesses

Abstract

Premature, newborns and neonates comprise the most vulnerable age group among children, with a high incidence of perioperative critical events leading to increased morbidity and mortality. Adverse events due to anaesthesia are three times more common in children as compared to adults. Twenty-four hour perioperative mortality is 50 times more in neonates and 20 times greater in infants as compared to older children and surgery and anesthesia further increase the risks in this age group. Hence monitoring becomes very important in the perioperative period. The basic aim of monitoring during anaesthesia in preterm, newborns and neonates undergoing surgery is to ensure the safety while maintaining the quality of anaesthesia. It includes non-invasive & invasive monitoring of all vital systems. This chapter will discuss in detail various systemic monitoring tools, their relevance to the anaesthesiologist, minimal monitoring criteria, and indications when to institute invasive monitoring in these very tiny highly vulnerable group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guideline on Standards for Basic Anesthetic Monitoring. Approved by the ASA House of Delegates on October 21, 1986, last amended on October 20, 2010, reaffirmed December 13, 2020. [file:///C:/Users/nurse/Desktop/standards-for-basic-anesthetic-monitoring.pdf].

    Google Scholar 

  2. Watson A, Visram A. Survey of the use of oesophageal and precordial stethoscopes in current paediatric anaesthetic practice. Paediatr Anaesth. 2001 Jul;11(4):437–42.

    Article  CAS  PubMed  Google Scholar 

  3. Motoyama E. Smith’s anesthesia for infants and children. 8thed. Peter Davis Franklyn Cladis (Editor). Mosby; 2010.

    Google Scholar 

  4. Kugler J, Stirt JA, Finholt D, Sussman MD. The one that got away: misplaced esophageal stethoscope. Anesthesiology. 1985;62(5):643–5.

    Article  CAS  PubMed  Google Scholar 

  5. Giri P, Roth P. Neonatal hypertension. Pediatr Rev. 2020;41(6):307–11.

    Article  PubMed  Google Scholar 

  6. Parkm M. Park’s pediatric cardiology for practitioners. 6th ed. Mosby; 2014.

    Google Scholar 

  7. König K, Casalaz DM, Burke EJ, Watkins A. Accuracy of non-invasive blood pressure monitoring in very preterm infants. Intensive Care Med. 2012;38(4):670–6.

    Article  PubMed  Google Scholar 

  8. Greaney D, Nakhjavani S, Desmond F, et al. Suitability of the forearm for non-invasive blood pressure measurement in children. Paediatr Anaesth. 2017;27(11):1125–30.

    Article  PubMed  Google Scholar 

  9. Short JA. Noninvasive blood pressure measurement in the upper and lower limbs of anaesthetized children. Paediatr Anaesth. 2000;10(6):591–3.

    Article  CAS  PubMed  Google Scholar 

  10. Shimokaze T, Akaba K, Saito E. Oscillometric and intra-arterial blood pressure in preterm and term infants: extent of discrepancy and factors associated with inaccuracy. Am J Perinatol. 2015;32(3):277–82.

    PubMed  Google Scholar 

  11. Flynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents published correction appears in Pediatrics. Pediatrics. 2017;140(3):e20171904; Correction in Pediatrics. 2018;142(3).

    Article  PubMed  Google Scholar 

  12. Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol. 1995;15(6):470–9.

    CAS  PubMed  Google Scholar 

  13. Dionne JM, Bremner SA, Baygani SK, et al. Method of blood pressure measurement in neonates and infants: a systematic review and analysis. J Pediatr. 2020;221:23–31.e5.

    Article  PubMed  Google Scholar 

  14. Cayabyab R, McLean CW, Seri I. Definition of hypotension and assessment of hemodynamics in the preterm neonate. J Perinatol. 2009;29(Suppl 2):S58–62.

    Article  PubMed  Google Scholar 

  15. Batton B, Li L, Newman NS, et al. Use of antihypotensive therapies in extremely preterm infants. Pediatrics. 2013;131(6):e1865–73.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Batton B. Neonatal blood pressure standards: what is “Normal”? Clin Perinatol. 2020;47(3):469–85.

    Article  PubMed  Google Scholar 

  17. Dempsey EM, Barrington KJ, Marlow N, et al. Management of hypotension in preterm infants (The HIP Trial): a randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology. 2014;105(4):275–81.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou J, Elkhateeb O, Lee KS. Comparison of non-invasive vs invasive blood pressure measurement in neonates undergoing therapeutic hypothermia for hypoxic ischemic encephalopathy. J Perinatol. 2016;36:381–5.

    Article  CAS  PubMed  Google Scholar 

  19. Schindler E, Kowald B, Suess H, Niehaus-Borquez B, et al. Catheterization of the radial or brachial artery in neonates and infants. Paediatr Anaesth. 2005;15(8):677–82.

    Article  PubMed  Google Scholar 

  20. Imamura T, Momoi N, Go H, Ogasawara K, Kanai Y, et al. Evaluation of arterial catheter management in very preterm neonates: peripheral artery versus umbilical artery. Fukushima J Med Sci. 2012;58(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Varga EQ, Candiotti KA, Saltzman B, Gayer S, Giquel J, et al. Evaluation of distal radial artery cross-sectional internal diameter in pediatric patients using ultrasound. Paediatr Anaesth. 2013;23(5):460–2.

    Article  PubMed  Google Scholar 

  22. Breschan C, Kraschl R, Jost R, Marhofer P, Likar R. Axillary brachial plexus block for treatment of severe forearm ischemia after arterial cannulation in an extremely low birth-weight infant. Paediatr Anaesth. 2004;14(8):681–4.

    Article  PubMed  Google Scholar 

  23. Słowińska-Klencka D, Klencki M, Sporny S, Lewiński A. Fine-needle aspiration biopsy of the thyroid in an area of endemic goitre: influence of restored sufficient iodine supplementation on the clinical significance of cytological results. Eur J Endocrinol. 2002;146(1):19–26.

    Article  PubMed  Google Scholar 

  24. Suman RP, Udani R, Nanavati R. Kangaroo mother care for low birth weight infants: a randomized controlled trial. Indian Pediatr. 2008;45(1):17–23.

    PubMed  Google Scholar 

  25. Scott-Warren VL, Morley RB. Paediatric vascular access. BJA Educ. 2015;15(4):199–206.

    Article  Google Scholar 

  26. Gao YB, Yan JH, Gao FQ, Pan L, et al. Effects of ultrasound-guided radial artery catheterization: an updated meta-analysis. Am J Emerg Med. 2015;33(1):50–5.

    Article  PubMed  Google Scholar 

  27. Karacalar S, Ture H, Baris S, Karakaya D, Sarihasan B. Ulnar artery versus radial artery approach for arterial cannulation: a prospective, comparative study. J Clin Anesth. 2007;19(3):209–13.

    Article  PubMed  Google Scholar 

  28. Soleymani S, Borzage M, Seri I. Hemodynamic monitoring in neonates: advances and challenges. J Perinatol. 2010;30(Suppl):S38–45.

    Article  PubMed  Google Scholar 

  29. Gan H, Cannesson M, Chandler JR, Ansermino JM. Predicting fluid responsiveness in children: a systematic review. Anesth Analg. 2013;117(6):1380–92.

    Article  PubMed  Google Scholar 

  30. Yager P, Noviski N. Shock. Pediatr Rev. 2010;31(8):311–9.

    Article  PubMed  Google Scholar 

  31. Ahn SY, Kim ES, Kim JK, Shin JH, Sung SI, Jung JM, et al. Permissive hypotension in extremely low birth weight infants (≤1000 gm). Yonsei Med J. 2012;53(4):765–71.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Detaille T, Pirotte T, Veyckemans F. Vascular access in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24(3):403–18.

    Article  PubMed  Google Scholar 

  33. Brasher C, Malbezin S. Central venous catheters in small infants. Anesthesiology. 2018;128(1):4–5.

    Article  PubMed  Google Scholar 

  34. Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics. 2008;122(6):e1219–24.

    Article  PubMed  Google Scholar 

  35. McEvedy BA, McLeod ME, Kirpalani H, Volgyesi GA, Lerman J. End-tidal carbon dioxide measurements in critically ill neonates: a comparison of side-stream and mainstream capnometers. Can J Anaesth. 1990;37(3):322–6.

    Article  CAS  PubMed  Google Scholar 

  36. McKee LA, Fabres J, Howard G, Peralta-Carcelen M, Carlo WA, Ambalavanan N. PaCO2 and neurodevelopment in extremely low birth weight infants. J Pediatr. 2009;155(2):217–21.

    Article  PubMed  Google Scholar 

  37. Giannakopoulou C, Korakaki E, Manoura A, Bikouvarakis S, et al. Significance of hypocarbia in the development of periventricular leukomalacia in preterm infants. Pediatr Int. 2004;46(3):268–73.

    Article  PubMed  Google Scholar 

  38. Hochwald O, Borenstein-Levin L, Dinur G, Jubran H, et al. Continuous noninvasive carbon dioxide monitoring in neonates: from theory to standard of care. Pediatrics. 2019;144(1):e20183640.

    Article  PubMed  Google Scholar 

  39. Hagerty JJ, Kleinman ME, Zurakowski D, Lyons AC, Krauss B. Accuracy of a new low-flow sidestream capnography technology in newborns: a pilot study. J Perinatol. 2002;22(3):219–25.

    Article  PubMed  Google Scholar 

  40. Whitesell R, Asiddao C, Gollman D, Jablonski J. Relationship between arterial and peak expired carbon dioxide pressure during anesthesia and factors influencing the difference. Anesth Analg. 1981;60(7):508–12.

    Article  CAS  PubMed  Google Scholar 

  41. Harigopal S, Satish HP. End-tidal carbon dioxide monitoring in neonates. Infant. 2008;4(2):51–3.

    Google Scholar 

  42. Karlsson V, Sporre B, Hellström-Westas L, Ågren J. Poor performance of main-stream capnography in newborn infants during general anesthesia. Paediatr Anaesth. 2017;27(12):1235–40.

    Article  PubMed  Google Scholar 

  43. Tingay DG, Stewart MJ, Morley CJ. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hagerty JJ, Kleinman ME, Zurakowski D, Lyons AC, Krauss B. Accuracy of a new low-flow side stream capnography technology in newborns: a pilot study. J Perinatol. 2002;22:219–25.

    Article  PubMed  Google Scholar 

  45. Bhavani-Shankar K, Moseley H, Kumar AY, Delph Y. Capnometry and anaesthesia. Can J Anaesth. 1992;39(6):617–32.

    Article  CAS  PubMed  Google Scholar 

  46. Eipe N, Doherty DR. A review of pediatric capnography. J Clin Monit Comput. 2010;24(4):261–8.

    Article  PubMed  Google Scholar 

  47. Short JA, Paris ST, Booker PD, Fletcher R. Arterial to end-tidal carbon dioxide tension difference in children with congenital heart disease. Br J Anaesth. 2001;86(3):349–53.

    Article  CAS  PubMed  Google Scholar 

  48. Badgwell JM, Heavner JE, May WS, Goldthorn JF, Lerman J. End-tidal PCO2 monitoring in infants and children ventilated with either a partial rebreathing or a non-rebreathing circuit. Anesthesiology. 1987;66(3):405–10.

    Article  CAS  PubMed  Google Scholar 

  49. Tobias JD. Transcutaneous carbon dioxide monitoring in infants and children. Paediatr Anaesth. 2009;19(5):434–44.

    Article  PubMed  Google Scholar 

  50. O’Connor TA, Grueber R. Transcutaneous measurement of carbon dioxide tension during long-distance transport of neonates receiving mechanical ventilation. J Perinatol. 1998;18(3):189–92.

    PubMed  Google Scholar 

  51. van Wijk JJ, Weber F, Stolker RJ, Staals LM. Current state of noninvasive, continuous monitoring modalities in pediatric anesthesiology. Curr Opin Anaesthesiol. 2020;33(6):781–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nosovitch MA, Johnson JO, Tobias JD. Noninvasive intraoperative monitoring of carbon dioxide in children: endtidal versus transcutaneous techniques. Paediatr Anaesth. 2002;12(1):48–52.

    Article  PubMed  Google Scholar 

  53. Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg. 2007;105(6):S48–52.

    Article  PubMed  Google Scholar 

  54. Hochwald O, Borenstein-Levin L, Dinur G, Jubran H, Ben-David S, Kugelman A. Continuous noninvasive carbon dioxide monitoring in neonates: from theory to standard of care. Pediatrics. 2019;144(1):e20183640.

    Article  PubMed  Google Scholar 

  55. Committee on Hospital Care of the American Academy of Pediatrics and Pediatric Section of the Society of Critical Care Medicine. Guidelines and levels of care for pediatric intensive care units. Pediatrics. 1993;92(1):166–75.

    Article  Google Scholar 

  56. Saugstad OD. Oxygenation of the immature infant: a commentary and recommendations for oxygen saturation targets and alarm limits. Neonatology. 2018;114(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  57. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, Saugstad OD, Simeoni U, Speer CP, Vento M, Halliday HL; European Association of Perinatal Medicine. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants—2013 update. Neonatology 2013;103(4):353-368.

    Google Scholar 

  58. Koppel RI, Druschel CM, Carter T, et al. Effectiveness of pulse oximetry screening for congenital heart disease in asymptomatic newborns. Pediatrics. 2003;111(3):451–5.

    Article  PubMed  Google Scholar 

  59. Ewer AK, Martin GR. Newborn pulse oximetry screening: which algorithm is best? Pediatrics. 2016;138(5):e20161206.

    Article  PubMed  Google Scholar 

  60. Wackernagel D, Blennow M, Hellström A. Accuracy of pulse oximetry in preterm and term infants is insufficient to determine arterial oxygen saturation and tension. Acta Paediatr. 2020;109:2251–7.

    Article  CAS  PubMed  Google Scholar 

  61. Cummings JJ, Polin RA, Committee on Fetus and Newborn. Oxygen targeting in extremely low birth weight infants. Pediatrics. 2016;138(2):e20161576.

    Article  PubMed  Google Scholar 

  62. Gupta S, Jawanda MK. The impacts of COVID-19 on children. Acta Paediatr. 2020;109(11):2181–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dawson JA, Davis PG, O'Donnell CP, Kamlin CO, Morley CJ. Pulse oximetry for monitoring infants in the delivery room: a review. Arch Dis Child Fetal Neonatal Ed. 2007;92(1):F4–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goldman JM, Petterson MT, Kopotic RJ, Barker SJ. Masimo signal extraction pulse oximetry. J Clin Monit Comput. 2000;16(7):475–83.

    Article  CAS  PubMed  Google Scholar 

  65. Malviya S, Reynolds PI, Voepel-Lewis T, Siewert M, Watson D, Tait AR, Tremper K. False alarms and sensitivity of conventional pulse oximetry versus the Masimo SET technology in the pediatric postanesthesia care unit. Anesth Analg. 2000;90(6):1336–40.

    Article  CAS  PubMed  Google Scholar 

  66. Polin RA, Bateman DA, Sahni R. Pulse oximetry in very low birth weight infants. Clin Perinatol. 2014;41(4):1017–32.

    Article  PubMed  Google Scholar 

  67. Tipple M. Interpretation of electrocardiograms in infants and children. Images Paediatr Cardiol. 1999;1(1):3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Davignon A, Rautaharju P, Boiselle E, Soumis F, Megelas M, Choquette A. Normal ECG standards for infants and children. Pediatr Cardiol. 1979;1:123–31.

    Article  Google Scholar 

  69. Schwartz PJ, Garson A Jr, Paul T, Stramba-Badiale M, Vetter VL, Wren C, European Society of Cardiology. Guidelines for the interpretation of the neonatal electrocardiogram. A task force of the European Society of Cardiology. Eur Heart J. 2002;23(17):1329–44.

    Article  CAS  PubMed  Google Scholar 

  70. Johnsrude CL, Perry JC, Towbin JA. Myocardial infarction in children. Primary Cardiol. 1994;20:23–32.

    Google Scholar 

  71. Doniger SJ, Sharieff GQ. Pediatric dysrhythmias. Pediatr Clin North Am. 2006;53(1):85–105.

    Article  PubMed  Google Scholar 

  72. Drew BJ, Califf RM, Funk M, et al. Practice standards for electrocardiographic monitoring in hospital settings: an American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology and Cardiovascular Disease in the Young: endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses [correction in Circulation. 2005;25;111(3):378]. Circulation. 2004;110(17):2721–46.

    Article  PubMed  Google Scholar 

  73. Nilsson K. Maintenance and monitoring of body temperature in infants and children. Paediatr Anaesth. 1991;1:13–20.

    Article  Google Scholar 

  74. Perlman J, Kjaer K. Neonatal and maternal temperature regulation during and after delivery. Anesth Analg. 2016;123(1):168–72.

    Article  PubMed  Google Scholar 

  75. Russo A, McCready M, Torres L, et al. Reducing hypothermia in preterm infants following delivery. Pediatrics. 2014;133(4):e1055–62.

    Article  PubMed  Google Scholar 

  76. Manchanda V, Sarin YK, Ramji S. Prognostic factors determining mortality in surgical neonates. J Neonatal Surg. 2012;1(1):3.

    PubMed  PubMed Central  Google Scholar 

  77. Waldron S, MacKinnon R. Neonatal thermoregulation. Infant. 2007;3(3):101–4.

    Google Scholar 

  78. Kumar V, Shearer JC, Kumar A, Darmstadt GL. Neonatal hypothermia in low resource settings: a review. J Perinatol. 2009;29(6):401–12.

    Article  CAS  PubMed  Google Scholar 

  79. World Health Organization. In: World Health Organization, editor. Maternal and newborn health/safe motherhood. Thermal protection of the newborn: a practical guide; 1997. https://apps.who.int/iris/handle/10665/63986] assessed on 27th August 2021.

    Google Scholar 

  80. Thomas K. Thermoregulation in neonates. Neonatal Netw. 1994;13(2):15–22.

    CAS  PubMed  Google Scholar 

  81. Plattner O, Semsroth M, Sessler DI, Papousek A, et al. Lack of nonshivering thermogenesis in infants anesthetized with fentanyl and propofol. Anesthesiology. 1997;86(4):772–7.

    Article  CAS  PubMed  Google Scholar 

  82. Russo A, McCready M, Torres L, Theuriere C, Venturini S, et al. Reducing hypothermia in preterm infants following delivery. Pediatrics. 2014;133(4):e1055–62.

    Article  PubMed  Google Scholar 

  83. Cork RC, Vaughan RW, Humphrey LS. Precision and accuracy of intraoperative temperature monitoring. Anesth Analg. 1983 Feb;62(2):211–4.

    Article  CAS  PubMed  Google Scholar 

  84. Bissonnette B, Sessler DI, LaFlamme P. Intraoperative temperature monitoring sites in infants and children and the effect of inspired gas warming on esophageal temperature. Anesth Analg. 1989;69(2):192–6.

    Article  CAS  PubMed  Google Scholar 

  85. Jay O, Molgat-Seon Y, Chou S, Murto K. Skin temperature over the carotid artery provides an accurate noninvasive estimation of core temperature in infants and young children during general anesthesia. Paediatr Anaesth. 2013;23(12):1109–16.

    Article  PubMed  Google Scholar 

  86. Dewar DJ, Fraser JF, Choo KL, Kimble RM. Thermal injuries in three children caused by an electrical warming mattress. Br J Anaesth. 2004;93(4):586–9.

    Article  CAS  PubMed  Google Scholar 

  87. McCarthy LK, O'Donnell CP. Warming preterm infants in the delivery room: polyethylene bags, exothermic mattresses or both? Acta Paediatr. 2011;100(12):1534–7.

    Article  PubMed  Google Scholar 

  88. Negishi C, Hasegawa K, Mukai S, Nakagawa F, Ozaki M, Sessler DI. Resistive-heating and forced-air warming are comparably effective. Anesth Analg. 2003;96(6):1683–7.

    Article  PubMed  Google Scholar 

  89. Sessler DI. Complications and treatment of mild hypothermia. Anesthesiology. 2001;95(2):531–43.

    Article  CAS  PubMed  Google Scholar 

  90. Lawes EG. Hidden hazards and dangers associated with the use of HME/filters in breathing circuits. Their effect on toxic metabolite production, pulse oximetry and airway resistance. Br J Anaesth. 2003;91(2):249–64.

    Article  CAS  PubMed  Google Scholar 

  91. Whitelock DE, de Beer DA. The use of filters with small infants. Respir Care Clin N Am. 2006;12(2):307–20.

    PubMed  Google Scholar 

  92. Desmond FA, Namachivayam S. Does near-infrared spectroscopy play a role in paediatric intensive care? BJA Educ. 2016;16(8):281–5.

    Article  Google Scholar 

  93. Costerus S, Vlot J, van Rosmalen J, Wijnen R, Weber F. Effects of neonatal thoracoscopic surgery on tissue oxygenation: a pilot study on (neuro-) monitoring and outcomes. Eur J Pediatr Surg. 2019;29(2):166–72.

    Article  PubMed  Google Scholar 

  94. Marin T, Moore J. Understanding near-infrared spectroscopy. Adv Neonatal Care. 2011;11(6):382–8.

    Article  PubMed  Google Scholar 

  95. Weber F, Scoones GP. A practical approach to cerebral near-infrared spectroscopy (NIRS) directed hemodynamic management in noncardiac pediatric anesthesia. Paediatr Anaesth. 2019;29(10):993–1001.

    Article  PubMed  Google Scholar 

  96. Steppan J, Hogue CW Jr. Cerebral and tissue oximetry. Best Pract Res Clin Anaesthesiol. 2014;28(4):429–39.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, Groenendaal F, van Bel F, Lemmers P. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79(1-1):55–64.

    Article  CAS  PubMed  Google Scholar 

  98. Kurth CD, McCann JC, Wu J, Miles L, Loepke AW. Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets. Anesth Analg. 2009;108(4):1268–77.

    Article  PubMed  Google Scholar 

  99. Moerman A, Wouters P. Near-infrared spectroscopy (NIRS) monitoring in contemporary anesthesia and critical care. Acta Anaesthesiol Belg. 2010;61(4):185–94.

    CAS  PubMed  Google Scholar 

  100. Tortoriello TA, Stayer SA, Mott AR, McKenzie ED, et al. A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth. 2005;15(6):495–503.

    Article  PubMed  Google Scholar 

  101. Scott JP, Hoffman GM. Near-infrared spectroscopy: exposing the dark (venous) side of the circulation. Paediatr Anaesth. 2014;24(1):74–88.

    Article  PubMed  Google Scholar 

  102. Wallin M, Lönnqvist PA. A healthy measure of monitoring fundamentals! Paediatr Anaesth. 2018;28(7):580–7.

    Article  PubMed  Google Scholar 

  103. Hellström-Westas L. Amplitude-integrated electroencephalography for seizure detection in newborn infants. Semin Fetal Neonatal Med. 2018;23(3):175–82.

    Article  PubMed  Google Scholar 

  104. Liu W, Yang Q, Wei H, Dong W, Fan Y, Hua Z. Prognostic value of clinical tests in neonates with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: a systematic review and meta-analysis. Front Neurol. 2020;11:133.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fogtmann EP, Plomgaard AM, Greisen G, Gluud C. Prognostic accuracy of electroencephalograms in preterm infants: a systematic review. Pediatrics. 2017;139(2):e20161951.

    Article  PubMed  Google Scholar 

  106. Bruns N, Felderhoff-Müser U, Dohna-Schwake C. EEG as a useful tool for neuromonitoring in critically ill children—current evidence and knowledge gaps. Acta Paediatr. 2021;110:1132–40.

    Article  PubMed  Google Scholar 

  107. Gucuyener K. Use of amplitude-integrated electroencephalography in neonates with special emphasis on hypoxic-ischemic encephalopathy and therapeutic hypothermia. J Clin Neonatol. 2016;5:18–30.

    Article  Google Scholar 

  108. Hellström-Westas L, Klette H, Thorngren-Jerneck K, Rosén I. Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics. 2001;32(6):319–24.

    Article  PubMed  Google Scholar 

  109. Oria M, Duru S, Scorletti F, Vuletin F, Encinas JL, et al. Intracisternal Bio Glue injection in the fetal lamb: a novel model for creation of obstructive congenital hydrocephalus without additional chemically induced neuroinflammation. J Neurosurg Pediatr. 2019;24(6):652–62.

    Article  Google Scholar 

  110. Yi YG, Kim K, Shin HI, Bang MS, Kim HS, Choi J, et al. Feasibility of intraoperative monitoring of motor evoked potentials obtained through transcranial electrical stimulation in infants younger than 3 months. J Neurosurg Pediatr. 2019;15:1–9.

    CAS  Google Scholar 

  111. Aydinlar EI, Dikmen PY, Kocak M, Baykan N, et al. Intraoperative neuromonitoring of motor-evoked potentials in infants undergoing surgery of the spine and spinal cord. J Clin Neurophysiol. 2019;36(1):60–6.

    Article  PubMed  Google Scholar 

  112. Flanders TM, Franco AJ, Hines SJ, Taylor JA, Heuer GG. Neonatal intraoperative neuromonitoring in thoracic myelocystocele: a case report. Childs Nerv Syst. 2020;36(2):435–9.

    Article  PubMed  Google Scholar 

  113. Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A. Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr. 2011;7(4):331–7.

    Article  PubMed  Google Scholar 

  114. Vecchierini-Blineau MF, Guiheneuc P. Vitesses de conduction nerveuse motrice chez l’enfant: valeurs normales et applications à quelques cas pathologiques [Motor nerve conduction velocity in children: normal values and application to a few pathologic cases]. Rev Electroencephalogr Neurophysiol Clin. 1984;13(4):340–8.

    Article  CAS  PubMed  Google Scholar 

  115. Chen X, Sterio D, Ming X, Para DD, Butusova M, Tong T, Beric A. Success rate of motor evoked potentials for intraoperative neurophysiologic monitoring: effects of age, lesion location, and preoperative neurologic deficits. J Clin Neurophysiol. 2007;24(3):281–5.

    Article  PubMed  Google Scholar 

  116. Baang HY, Swingle N, Sajja K, Madhavan D, Shostrom VK, Taraschenko O. Towards successes in the management of nonconvulsive status epilepticus: tracing the detection-to-needle trajectories. J Clin Neurophysiol. 2020;37(3):253–8.

    Article  PubMed  Google Scholar 

  117. Ganesh A, Watcha MF. Bispectral index monitoring in pediatric anesthesia. Curr Opin Anaesthesiol. 2004;17(3):229–34.

    Article  PubMed  Google Scholar 

  118. Sciusco A, Standing JF, Sheng Y, Raimondo P, Cinnella G, Dambrosio M. Effect of age on the performance of bispectral and entropy indices during sevoflurane pediatric anesthesia: a pharmacometric study. Paediatr Anaesth. 2017;27(4):399–408.

    Article  PubMed  Google Scholar 

  119. Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther. 2014;19(4):262–76.

    PubMed  PubMed Central  Google Scholar 

  120. O'Connor MF, Daves SM, Tung A, Cook RI, Thisted R, Apfelbaum J. BIS monitoring to prevent awareness during general anesthesia. Anesthesiology. 2001;94(3):520–2.

    Article  CAS  PubMed  Google Scholar 

  121. Withington DE, Davis GM, Vallinis P, Del Sonno P, Bevan JC. Respiratory function in children during recovery from neuromuscular blockade. Paediatr Anaesth. 1998;8(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  122. Goudsouzian NG. Maturation of neuromuscular transmission in the infant. Br J Anaesth. 1980;52(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  123. Ledowski T, O'Dea B, Meyerkort L, Hegarty M, von Ungern-Sternberg BS. Postoperative residual neuromuscular paralysis at an Australian Tertiary Children’s Hospital. Anesthesiol Res Pract. 2015;2015:410248.

    PubMed  PubMed Central  Google Scholar 

  124. Playfor S, Jenkins I, Boyles C, Choonara I, Davies G, Haywood T, et al. A United Kingdom Paediatric Intensive Care Society Sedation, Analgesia and Neuromuscular Blockade Working Group. Consensus guidelines for sustained neuromuscular blockade in critically ill children. Paediatr Anaesth. 2007;17(9):881–7.

    Article  PubMed  Google Scholar 

  125. Wokke JH, Jennekens FG, van den Oord CJ, Veldman H, van Gijn J. Histological investigations of muscle atrophy and end plates in two critically ill patients with generalized weakness. J Neurol Sci. 1988;88(1-3):95–106.

    Article  CAS  PubMed  Google Scholar 

  126. Saldien V, Vermeyen KM. Neuromuscular transmission monitoring in children. Paediatr Anaesth. 2004;14(4):289–92.

    Article  CAS  PubMed  Google Scholar 

  127. Goudsouzian NG, Crone RK, Todres ID. Recovery from pancuronium blockade in the neonatal intensive care unit. Br J Anaesth. 1981;53(12):1303–9.

    Article  CAS  PubMed  Google Scholar 

  128. Makaryus R, Miller TE, Gan TJ. Current concepts of fluid management in enhanced recovery pathways. Br J Anaesth. 2018;120(2):376–83.

    Article  CAS  PubMed  Google Scholar 

  129. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.

    Article  PubMed  Google Scholar 

  130. Walters S, Porter C, Brophy PD. Dialysis and pediatric acute kidney injury: choice of renal support modality. Pediatr Nephrol. 2009;24(1):37–48.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Koul, A., Sood, J. (2023). Monitoring During Anaesthesia in the Newborn and Neonate. In: Saha, U. (eds) Clinical Anesthesia for the Newborn and the Neonate. Springer, Singapore. https://doi.org/10.1007/978-981-19-5458-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5458-0_22

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5457-3

  • Online ISBN: 978-981-19-5458-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics