Skip to main content
Log in

Recent Progress in JAK Inhibitors for the Treatment of Rheumatoid Arthritis

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

An Erratum to this article was published on 03 October 2016

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovial inflammation and joint destruction. Considerable advance in the treatment of RA has been made following the advent of biological disease-modifying anti-rheumatic drugs (DMARDs). However, these biologics require intravenous or subcutaneous injection and some patients fail to respond to biological DMARDs or lose their primary response. Various cytokines and cell surface molecules bind to receptors on the cell surface, resulting in the activation of various cell signaling pathways, including phosphorylation of kinase proteins. Among these kinases, the non-receptor tyrosine kinase family Janus kinase (JAK) plays a pivotal role in the pathological processes of RA. Several JAK inhibitors have been developed as new therapies for patients with RA. These are oral synthetic DMARDs that inhibit JAK1, 2, and 3. One JAK inhibitor, tofacitinib, has already been approved in many countries. Results of phase III clinical trials using a JAK1/2 inhibitor, baricitinib, have shown feasible efficacy and tolerable safety. Both drugs are effective in patients who showed inadequate response to biological DMARDs as well as synthetic DMARDs. In addition, clinical phase III trials using filgotinib and ABT-494, specific JAK1 inhibitors, are currently underway. JAK inhibitors are novel therapies for RA, but further studies are needed to determine their risk–benefit ratio and selection of the most appropriate patients for such therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burmester GR, Kivitz AJ, Kupper H, Arulmani U, Florentinus S, Goss SL, et al. Efficacy and safety of ascending methotrexate dose in combination with adalimumab: the randomised CONCERTO trial. Ann Rheum Dis. 2015;74(6):1037–44.

    Article  PubMed  Google Scholar 

  2. Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. Rheumatology. 2014;53(9):1560–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.

    Article  CAS  PubMed  Google Scholar 

  4. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.

    Article  PubMed  Google Scholar 

  5. Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007;28(5):730–8.

    Article  CAS  PubMed  Google Scholar 

  7. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  8. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–83.

    Article  CAS  PubMed  Google Scholar 

  10. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93(3):397–409.

    Article  CAS  PubMed  Google Scholar 

  11. Pelletier S, Gingras S, Funakoshi-Tago M, Howell S, Ihle JN. Two domains of the erythropoietin receptor are sufficient for Jak2 binding/activation and function. Mol Cell Biol. 2006;26(22):8527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    Article  CAS  PubMed  Google Scholar 

  13. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322.

    Article  CAS  PubMed  Google Scholar 

  14. Firmbach-Kraft I, Byers M, Shows T, Dalla-Favera R, Krolewski JJ. tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene. 1990;5(9):1329–36.

    CAS  PubMed  Google Scholar 

  15. Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992;70(2):313–22.

    Article  CAS  PubMed  Google Scholar 

  16. Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13(4):549–60.

    Article  CAS  PubMed  Google Scholar 

  17. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.

    Article  CAS  PubMed  Google Scholar 

  18. Walker JG, Ahern MJ, Coleman M, Weedon H, Papangelis V, Beroukas D, et al. Changes in synovial tissue Jak-STAT expression in rheumatoid arthritis in response to successful DMARD treatment. Ann Rheum Dis. 2006;65(12):1558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walker JG, Ahern MJ, Coleman M, Weedon H, Papangelis V, Beroukas D, et al. Expression of Jak3, STAT1, STAT4, and STAT6 in inflammatory arthritis: unique Jak3 and STAT4 expression in dendritic cells in seropositive rheumatoid arthritis. Ann Rheum Dis. 2006;65(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  20. Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH, et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science. 2003;302(5646):875–8.

    Article  CAS  PubMed  Google Scholar 

  21. Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012;30(9):858–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maeshima K, Yamaoka K, Kubo S, Nakano K, Iwata S, Saito K, et al. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-gamma and interleukin-17 production by human CD4+ T cells. Arthritis Rheum. 2012;64(6):1790–8.

    Article  CAS  PubMed  Google Scholar 

  23. Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature. 2015;520(7548):558–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kubo S, Yamaoka K, Kondo M, Yamagata K, Zhao J, Iwata S, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis. 2014;73(12):2192–8.

    Article  CAS  PubMed  Google Scholar 

  25. Wang SP, Iwata S, Nakayamada S, Niiro H, Jabbarzadeh-Tabrizi S, Kondo M, et al. Amplification of IL-21 signalling pathway through Bruton’s tyrosine kinase in human B cell activation. Rheumatology. 2015;54(8):1488–97.

    Article  PubMed  Google Scholar 

  26. Onda M, Ghoreschi K, Steward-Tharp S, Thomas C, O’Shea JJ, Pastan IH, et al. Tofacitinib suppresses antibody responses to protein therapeutics in murine hosts. J Immunol. 2014;193(1):48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker JG, Ahern MJ, Coleman M, Weedon H, Papangelis V, Beroukas D, et al. Characterisation of a dendritic cell subset in synovial tissue which strongly expresses Jak/STAT transcription factors from patients with rheumatoid arthritis. Ann Rheum Dis. 2007;66(8):992–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis Rheum. 2012;64(12):3856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis. 2012;71(3):440–7.

    Article  CAS  PubMed  Google Scholar 

  30. Boyle DL, Soma K, Hodge J, Kavanaugh A, Mandel D, Mease P, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis. 2015;74(6):1311–6.

    Article  CAS  PubMed  Google Scholar 

  31. Borie DC, Larson MJ, Flores MG, Campbell A, Rousvoal G, Zhang S, et al. Combined use of the JAK3 inhibitor CP-690,550 with mycophenolate mofetil to prevent kidney allograft rejection in nonhuman primates. Transplantation. 2005;80(12):1756–64.

    Article  CAS  PubMed  Google Scholar 

  32. Rousvoal G, Si MS, Lau M, Zhang S, Berry GJ, Flores MG, et al. Janus kinase 3 inhibition with CP-690,550 prevents allograft vasculopathy. Transpl Int. 2006;19(12):1014–21.

    Article  CAS  PubMed  Google Scholar 

  33. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanaka Y, Suzuki M, Nakamura H, Toyoizumi S, Zwillich SH. Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res. 2011;63(8):1150–8.

    Article  CAS  Google Scholar 

  35. Fleischmann R, Cutolo M, Genovese MC, Lee EB, Kanik KS, Sadis S, et al. Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. Arthritis Rheum. 2012;64(3):617–29.

    Article  CAS  PubMed  Google Scholar 

  36. Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367(6):495–507.

    Article  CAS  PubMed  Google Scholar 

  37. Kremer J, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E, et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2013;159(4):253–61.

    Article  PubMed  Google Scholar 

  38. Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377–86.

    Article  PubMed  Google Scholar 

  39. van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367(6):508–19.

    Article  PubMed  Google Scholar 

  40. van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J, Zerbini C, et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 2013;65(3):559–70.

    Article  PubMed  Google Scholar 

  41. Kremer JM, Bloom BJ, Breedveld FC, Coombs JH, Fletcher MP, Gruben D, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009;60(7):1895–905.

    Article  CAS  PubMed  Google Scholar 

  42. Kremer JM, Cohen S, Wilkinson BE, Connell CA, French JL, Gomez-Reino J, et al. A phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. Arthritis Rheum. 2012;64(4):970–81.

    Article  CAS  PubMed  Google Scholar 

  43. Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 2013;381(9865):451–60.

    Article  CAS  PubMed  Google Scholar 

  44. Sonomoto K, Yamaoka K, Kubo S, Hirata S, Fukuyo S, Maeshima K, et al. Effects of tofacitinib on lymphocytes in rheumatoid arthritis: relation to efficacy and infectious adverse events. Rheumatology. 2014;53(5):914–8.

    Article  CAS  PubMed  Google Scholar 

  45. Curtis JR, Lee EB, Kaplan IV, Kwok K, Geier J, Benda B, et al. Tofacitinib, an oral Janus kinase inhibitor: analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann Rheum Dis. 2016;75(5):831–41.

    Article  PubMed  Google Scholar 

  46. Fridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298–307.

    Article  CAS  PubMed  Google Scholar 

  47. Emery P, McInnes I, Genovese M, Smolen J, Kremer J, Dougados M, et al. Characterization of changes in lymphocyte subsets in baricitinib-treated patients with rheumatoid arthritis in two phase 3 studies. In: ACR/ARHP Annual Meeting. San Francisco; 2015.

  48. Keystone EC, Taylor PC, Drescher E, Schlichting DE, Beattie SD, Berclaz PY, et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann Rheum Dis. 2015;74(2):333–40.

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka Y, Emoto K, Cai Z, Aoki T, Schlichting D, Rooney T, et al. Efficacy and safety of baricitinib in Japanese patients with active rheumatoid arthritis receiving background methotrexate therapy: a 12-week, double-blind, randomized placebo-controlled study. J Rheumatol. 2016;43(3):504–11.

    Article  PubMed  Google Scholar 

  50. Fleischmann R, Takeuchi T, Schlichting D, Macias W, Rooney T, Gurbuz S, et al. Baricitinib, Methotrexate, or Baricitinib Plus Methotrexate in patients with early rheumatoid arthritis who had received limited or no treatment with disease-modifying anti-rheumatic drugs (DMARDs): phase 3 trial results. In: ACR/ARHP Annual Meeting. San Francisco; 2015.

  51. Dougados M, van der Heijde D, Chen Y-C, Greenwald M, Drescher E, Liu J, et al. Baricitinib, an oral janus kinase (JAK)1/JAK2 inhibitor, in patients with active rheumatoid arthritis (RA) and an inadequate response to CDMARD therapy: results of the phase 3 RA-build study. In: EULAR congress. Rome; 2015. p. 79.

  52. Taylor P, Keystone E, van der Heijde D, Tanaka Y, Ishii T, Emoto K, et al. Baricitinib versus placebo or adalimumab in patients with active rheumatoid arthritis (RA) and an inadequate response to background methotrexate therapy: results of a phase 3 study. In: ACR/ARHP Annual Meeting. San Francisco; 2015.

  53. Genovese MC, Kremer J, Zamani O, Ludivico C, Krogulec M, Xie L, et al. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med. 2016;374(13):1243–52.

    Article  CAS  PubMed  Google Scholar 

  54. Ummarino D. Rheumatoid arthritis: RA-BEACON illuminates baricitinib. Nat Rev Rheumatol. 2016;12(6):313.

    Article  CAS  PubMed  Google Scholar 

  55. Winthrop KL, Yamanaka H, Valdez H, Mortensen E, Chew R, Krishnaswami S, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(10):2675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26(4):847–70.

    Article  PubMed  Google Scholar 

  57. Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119(7):931–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parish S, Offer A, Clarke R, Hopewell JC, Hill MR, Otvos JD, et al. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study. Circulation. 2012;125(20):2469–78.

    Article  CAS  PubMed  Google Scholar 

  59. Van Rompaey L, Galien R, van der Aar EM, Clement-Lacroix P, Nelles L, Smets B, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol. 2013;191(7):3568–77.

    Article  PubMed  Google Scholar 

  60. Kavanaugh A, Ponce L, Cseuz R, et al. Filgotinib (GLPG0634), an oral JAK1 selective inhibitor is effective as monotherapy in patients with active rheumatoid arthritis: results from a phase 2B dose ranging study. In: 2015 ACR/ARHP Annual Meeting. Abstract number: 1049.

  61. Westhovens R, Alten R, Pavlova D, et al. Filgotinib (GLPG0634), an oral JAK1 selective inhibitor is effective in combination with methotrexate in patients with active rheumatoid arthritis: results from a phase 2B dose ranging study. In: 2015 ACR/ARHP Annual Meeting. Abstract number: 1048.

  62. Voss JW, Graff J, Schwartz C, Hyland A, Argiriadi D, Camp M, et al. Pharmacodynamics of a novel Jak1 selective inhibitor in rat arthritis and anemia models and in healthy human subjects. Arthritis Rheum 2013;10:2374.

  63. Kremer JM, Keystone EC, Emery P, et al. Safety and efficacy of ABT-494, a novel selective JAK1 Inhibitor, in patients with active rheumatoid arthritis and inadequate response or intolerance to anti-TNF biologic therapy. In: 2015 ACR/ARHP Annual Meeting. Abstract number: 14L.

  64. Winthrop KL, Valdez H, Mortensen E, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64:S1051.

    Google Scholar 

  65. Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wollenhaupt J, Silverfield J, Lee EB, et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, long-term extension studies. J Rheumatol. 2014;41:837–52.

    Article  CAS  PubMed  Google Scholar 

  67. Vincenti F, Silva HT, Busque S, et al. Evaluation of the effect of tofacitinib exposure on outcomes in kidney transplant patients. Am J Transplant. 2015;15:1644–53.

    Article  CAS  PubMed  Google Scholar 

  68. Lim G, Wang S, Zhang Y, Tian Y, Mao J. Spinal leptin contributes to the pathogenesis of neuropathic pain in rodents. J Clin Investig. 2009;119(2):295–304.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank all medical staff in all participating institutions for providing the data.

Contributors

SN and YT contributed to overall review and writing of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiya Tanaka.

Ethics declarations

Funding

This work was supported in part by Research on Rare and Intractable Diseases and Research Grant-In-Aid for Scientific Research by the Ministry of Health, Labor and Welfare of Japan, the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the University of Occupational and Environmental Health, Japan, and UOEH Grant for Advanced Research.

Conflict of interest

Y Tanaka has received consulting fees, lecture fees, and/or honoraria from Mitsubishi-Tanabe, Eisai, Chugai, Abbott Japan, Astellas, Daiichi-Sankyo, Abbvie, Janssen, Pfizer, Takeda, Astra-Zeneca, Eli Lilly Japan, GlaxoSmithKline, Quintiles, MSD, Asahi-Kasei and has received research grants from Bristol-Myers, Mitsubishi-Tanabe, Abbvie, MSD, Chugai, Astellas, and Daiichi-Sankyo. S. Nakayamada, S. Kubo and S. Iwata declare no conflict of interest.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s40259-016-0198-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayamada, S., Kubo, S., Iwata, S. et al. Recent Progress in JAK Inhibitors for the Treatment of Rheumatoid Arthritis. BioDrugs 30, 407–419 (2016). https://doi.org/10.1007/s40259-016-0190-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-016-0190-5

Keywords

Navigation