Skip to main content

Impact of Biotic and Abiotic Stresses on Onion Production: Potential Mitigation Approaches in Modern Era

  • Chapter
  • First Online:
Smart Plant Breeding for Vegetable Crops in Post-genomics Era

Abstract

Onion is one of the most commonly consumed vegetable crops in the world, following tomato. Biotic and abiotic stresses are known to affect onion production, causing significant yield losses, similar to other vegetables and main crops. It is estimated that about 40% of overall losses in agricultural production is related to insects, pests, and weeds. Likewise, environmental fluctuation and climate change are threatening the production rate of onion. Strangely, in the era of omics approach to understand plants’ responses to environmental changes, there is limited literature regarding onion response to biotic and abiotic stresses. This chapter enlightens the impacts of biotic and abiotic stresses with the potential exploitation of modern plant improvement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alan AR, Lim W, Mutschler MA, Earle ED (2007) Complementary strategies for ploidy manipulations in gynogenic onion (Allium cepa L.). Plant Sci 173(1):25–31

    Article  CAS  Google Scholar 

  • Ali AAM, Ben Romdhane W, Tarroum M, Al-Dakhil M, Al-Doss A, Alsadon AA, Hassairi A (2021) Analysis of salinity tolerance in tomato introgression lines based on morpho-physiological and molecular traits. Plan Theory 10(12):2594

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  Google Scholar 

  • Asim A, Gökçe ZNÖ, Bakhsh A, Çayli İT, Aksoy E, Çalişkan S, Çalişkan ME, Demirel U (2021) Individual and combined effect of drought and heat stresses in contrasting potatocultivars overexpressing miR172b-3p. Turk J Agric For 45:651–668

    Article  CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, Tiwari RK, Lal MK, Shahid MA, Kumar R, Nawaz MA (2022) Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11(2):309

    Article  CAS  Google Scholar 

  • Anderson WP (1983) Weed Science. Principles. 2nd ed. St. Paul, MN: West Publishing Company

    Google Scholar 

  • Aydinalp C, Cresser MS (2008) The effects of global climate change on agriculture. Am Euras J Agric Environ Sci 3:672–676

    Google Scholar 

  • Ba Y, Zhai J, Yan J, Li K, Xu H (2021) H2S improves growth of tomato seedlings involving the MAPK signaling. Sci Hortic 288:110366

    Article  CAS  Google Scholar 

  • Bagali AN, Patil HB, Guled MB, Patil RV (2012) Effect of scheduling of drip irrigation on growth, yield and water use efficiency of onion (Allium cepa L.). Karnataka Journal of. Agric Sci 25(1)

    Google Scholar 

  • Bernstein N (2019) Plants and salt: plant response and adaptations to salinity. In: Model Ecosystems in Extreme Environments. Academic Press, pp 101–112

    Chapter  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Breeze E, Mullineaux PM (2022) The passage of H2O2 from chloroplasts to their associated nucleus during retrograde signalling: reflections on the role of the nuclear envelope. Plan Theory 11(4):552

    CAS  Google Scholar 

  • Brewster JL (2008) Onions and other vegetable alliums, vol 15. CABI

    Book  Google Scholar 

  • Byrne PF, McMullen MD, Snook ME, Musket TA, Theuri JM, Widstrom NW, Wiseman BR, Coe EH (1996) Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci 93(17):8820–8825

    Article  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  Google Scholar 

  • Cerda R, Avelino J, Gary C, Tixier P, Lechevallier E, Allinne C (2017) Primary and secondary yield losses caused by pests and diseases: assessment and modeling in coffee. PLoS One 12(1):e0169133

    Article  Google Scholar 

  • Chaudhry UK, Gökçe ZN, Gökçe AF (2020) Effects of salinity and drought stresses on the physio-morphological attributes of onion cultivars at bulbification stage. Int J Agric Biol 24(6):1681–1689

    CAS  Google Scholar 

  • Chaudhry UK, Gökçe ZNÖ, Gökçe AF (2021a) Influence of salinity stress on plants and their molecular mechanisms. In: MDPI in the 2nd international electronic conference on plant sciences—10th Anniversary of Journal Plants session Plant Response to Stresses and Changing Environment, Basel, Switzerland, vol 2

    Google Scholar 

  • Chaudhry UK, Gökçe ZNÖ, Gökçe AF (2021b) Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia 76(10):3107–3121

    Article  CAS  Google Scholar 

  • Chaudhry UK, Gökçe ZNÖ, Gökçe AF (2022) Salt stress and plant molecular responses. In: Kimatu JN (ed) Plant defense mechanisms. IntechOpen, London

    Google Scholar 

  • Corzo-Martínez M, Corzo N, Villamiel M (2007) Biological properties of onions and garlic. Trends Food Sci Technol 18(12):609–625

    Article  Google Scholar 

  • Culliney TW (2014) Crop losses to arthropods. In: Integrated pest management. Springer, Dordrecht, pp 201–225

    Chapter  Google Scholar 

  • Damon SJ, Havey MJ (2014) Quantitative trait loci controlling amounts and types of epicuticular waxes in onion. J Am Soc Hortic Sci 139(5):597–602

    Article  Google Scholar 

  • Damon S, Groves R, Havey MJ (2014) Variation for epicuticular waxes and numbers of Thripstabaci on onion foliage. J Am Soc Hortic, Sci, p 139495501

    Google Scholar 

  • Daymond AJ, Wheeler TR, Hadley P, Ellis RH, Morison JIL (1997) Effects of temperature, CO2 and their interaction on the growth, development and yield of two varieties of onion (Allium cepa L.). J Hortic Sci 72:135–145

    Article  Google Scholar 

  • Demirel U, Morris WL, Ducreux LJ, Yavuz C, Asim A, Tindas I, Campbell R, Morris JA, Verrall SR, Hedley PE, Gokce ZN (2020) Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front Plant Sci 11:169

    Article  Google Scholar 

  • Devi DVV, Kumari GM (2013) Real-time automation and monitoring system for modernized agriculture. Int J Rev Res Appl Sci Eng 3(1):7–12

    Google Scholar 

  • Diaz-Montano J, Fail J, Deutschlander M, Nault BA, Shelton AM (2012) Characterization of resistance, evaluation of the attractiveness of plant odors, and effect of leaf color on different onion cultivars to onion thrips (Thysanoptera: Thripidae). J Econ Entomol 105(2):632–641

    Article  Google Scholar 

  • Divya K, Palakolanu SR, KaviKishor P, Rajesh AS, Vadez V, Sharma KK, Mathur PB (2021) Functional characterization of late embryogenesis abundant genes and promoters in pearl millet (Pennisetum glaucum L.) for abiotic stress tolerance. Physiol Plant 173(4):1616–1628

    Article  CAS  Google Scholar 

  • Dommisse EM, Leung DW, Shaw ML, Conner AJ (1990) Onion is a monocotyledonous host for Agrobacterium. Plant Sci 69(2):249–257

    Article  Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126(8):2093–2101

    Article  CAS  Google Scholar 

  • Eady CC, Kamoi T, Kato M, Porter NG, Davis S, Shaw M, Kamoi A, Imai S (2008) Silencing onion lachrymatory factor synthase causes a significant change in the sulfur secondary metabolite profile. Plant Physiol 147(4):2096–2106

    Article  CAS  Google Scholar 

  • Ellison WD (1944) Two devices for measuring soil erosion. Agric Eng 25(2):53–55

    Google Scholar 

  • FAO (2013). www.fao.org/statistics

  • FAO (2017). www.fao.org/statistics

  • FAOSTAT (2020). Statistical Division of the UN Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed 18 Apr 2022

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Finkers R, van Workum W, van Kaauwen M, Huits H, Jungerius A, Vosman B, Scholten OE (2015) SEQUON-sequencing the onion genome, vol 10. Wageningen University and Research, Wageningen, p m9

    Google Scholar 

  • Fischer D, Bachmann K (2000) Onion microsatellites for germplasm analysis and their use in assessing intra-and interspecific relatedness within the subgenus Rhizirideum. Theor Appl Genet 101(1):153–164

    Article  CAS  Google Scholar 

  • Frediani D (1954) Ricerchemorfo—biologichesull’ Acrolepiaassectella Zell. (Lep. Plutellidae) nell’Italiacentrale. Redia 39:187–249

    Google Scholar 

  • Gaedike R (1997) Acrolepiidae. In: Heppner J (ed) Fascicle 55 in Lepidopterorum Catalogus. Association for Tropical Lepidoptera, Scientific Publishers, Gainesville, FL

    Google Scholar 

  • Geoffriau E, Kahane R, Rancillac M (1997) Variation of gynogenesis ability in onion (Allium cepa L.). Euphytica 94(1):37–44

    Article  Google Scholar 

  • Ghabn AAAE (1948) Contribution to the knowledge of the biology of Thripstabaci Lind. in Egypt. Bull Soc Fouad I Entomol 32:123–174

    Google Scholar 

  • Gharde Y, Singh PK, Dubey RP, Gupta PK (2018) Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot 107:12–18

    Article  Google Scholar 

  • Ghodke PH, Andhale PS, Gijare UM, Thangasamy A, Khade YP, Mahajan V, Singh M (2018) Physiological and biochemical responses in onion crop to drought stress. Int J Curr Microbiol App Sci 7(1):2054–2062

    Article  Google Scholar 

  • Ghodke P, Khandagale K, Thangasamy A, Kulkarni A, Narwade N, Shirsat D, Randive P, Roylawar P, Singh I, Gawande SJ, Mahajan V (2020) Comparative transcriptome analyses in contrasting onion (Allium cepa L.) genotypes for drought stress. PLoS One 15(8):e0237457

    Article  CAS  Google Scholar 

  • Gokçe ZNÖ, Gokçe AF, Junaid MD, Chaudhry UK (2021) Morphological, physiological, and biochemical responses of onion (Allium cepa L.) breeding lines to single and combined salt and drought stresses. Euphytica 218:29

    Article  Google Scholar 

  • Gökçe ZNÖ, Gökçe AF, Junaid MD, Chaudhry UK (2022) Morphological, physiological, and biochemical responses of onion (Allium cepa L.) breeding lines to single and combined salt and drought stresses. Euphytica 218(3):1–12

    Article  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175(4023):776–777

    Article  CAS  Google Scholar 

  • Griffiths G, Trueman L, Crowther T, Thomas B, Smith B (2002) Onions—a global benefit to health. Phytother Res 16(7):603–615

    Article  CAS  Google Scholar 

  • Grubben GJH, Denton OA (2004) Plant resources of tropical Africa 2. Vegetables. Plant resources of tropical Africa 2. Vegetables

    Google Scholar 

  • Gutiérrez J, Villa-Medina JF, Nieto-Garibay A, Porta-Gándara MÁ (2013) Automated irrigation system using a wireless sensor network and GPRS module. IEEE Trans Instrum Meas 63(1):166–176

    Article  Google Scholar 

  • Hanci F, Cebeci E (2015) Comparison of salinity and drought stress effects on some morphological and physiological parameters in onion (Allium Cepa L.) during early growth phase. Bull J Agri Sci 21(6):1204–1210

    Google Scholar 

  • Havey MJ (1997) On the origin and distribution of normal cytoplasm of onion. Genet Resour Crop Evol 44(4):307–313

    Article  Google Scholar 

  • Havey MJ (2018) Onion breeding. Plant Breed Rev 42:39–85

    Article  Google Scholar 

  • Havey MJ, Ghavami F (2018) Informativeness of single nucleotide polymorphisms and relationships among onion populations from important world production regions. J Am Soc Hortic Sci 143(1):34–44

    Article  CAS  Google Scholar 

  • Hewitt K (1997)Regions at risk. a geographical introduction to disasters. Addison Wesley Longman Limited, England

    Google Scholar 

  • Hillel D (2000) Salinity management for sustainable irrigation: integrating science, environment, and economics. The World Bank

    Book  Google Scholar 

  • Hodges RJ, Buzby JC, Bennett B (2011) Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J Agric Sci 149:37–45

    Article  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag 201:152–166

    Article  Google Scholar 

  • Ishikawa Y, Yamashita T, Nomura M (2000) Characteristics of summer diapause in the onion maggot, Delia antiqua (Diptera: Anthomyiidae). J Insect Physiol 46(2):161–167

    Article  CAS  Google Scholar 

  • Jakše M, Havey MJ, Bohanec B (2003) Chromosome doubling procedures of onion (Allium cepa L.) gynogenic embryos. Plant Cell Rep 21(9):905–910

    Article  Google Scholar 

  • Junaid MD, Chaudhry UK, Gökçe AF (2021) Climate change and plant growth–south Asian perspective. In: Climate change and plants: biodiversity, growth and interactions. CRC Press, pp 37–53

    Chapter  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53(1):299–328

    Article  CAS  Google Scholar 

  • Kim Y, Evans R, Iversen W (2008) Remote sensing and control of an irrigation system using a distributed wireless sensor network. In: IEEE transactions on instrumentation and measurement, pp. 1379–1387

    Google Scholar 

  • King JJ, Bradeen JM, Bark OH et al (1998) A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96:52–62

    Article  CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42(1):51–80

    Article  CAS  Google Scholar 

  • Lal R (1990) Soil erosion and land degradation: the global risks. In: Advances in soil science. Springer, New York, NY, pp 129–172

    Chapter  Google Scholar 

  • Landry JF (2007) Taxonomic review of the leek moth genus Acrolepiopsis (Lepidoptera: Acrolepiidae) in North America. Can Entomol 139:319–353

    Article  Google Scholar 

  • Lawande, K.E., 2010. Impact of climate change on onion and garlic production. Book chapter In: Singh HP, Singh JP, Lal SS (eds) Challenges of climate change-Indian Horticulture

    Google Scholar 

  • Lecomte C (1976) First observations on the biology and damage caused by the leek tineid Acrolepiopsisassectella (Microlepidoptera: Pluttellidae) on the coast of Algeria. Bull Soc Hist Nat Afr Nord 67(3–4):49–56

    Google Scholar 

  • Leghari SJ, Leghari UA, Laghari GM, Buriro M, Soomro FA (2015) An overview on various weed control practices affecting crop yield. J Chem Biol Phys Sci 6(1):059–069

    Google Scholar 

  • Lewis T (ed) (1997) Thrips as Crop Pests. CAB International, Wallingford, UK

    Google Scholar 

  • Lorenzoni I, Pidgeon NF (2006) Public views on climate change: European and USA perspectives. Clim Chang 77(1–2):73–95

    Article  Google Scholar 

  • Luthar Z, Bohanec B (1999) Induction of direct somatic organogenesis in onion (Allium cepa L.) using a two-step flower or ovary culture. Plant Cell Rep 18(10):797–802

    Article  CAS  Google Scholar 

  • Machuka J, Van Damme EJM, Peumans WJ, Jackai LEN (1999) Effect of plant lectins on larval development of the legume pod borer, Maruca vitrata. Entomol Exp Appl 93(2):179–187

    Article  CAS  Google Scholar 

  • Mahato A (2014) Climate change and its impact on agriculture. Int J Sci Res Publ 4(4):1–6

    Google Scholar 

  • Malhotra SK (2017) Horticultural crops and climate change: a review. Indian J Agric Sci 87(1):12–22

    Google Scholar 

  • Mano J, Takahashi M, Asada K (1987) Oxygen evolution from hydrogen peroxide in photosystem II: flash-induced catalytic activity of water-oxidizing photosystem II membranes. Biochemistry 26:2495–2501

    Article  CAS  Google Scholar 

  • Martınez LE, Agüero CB, Lopez ME, Galmarini CR (2000) Improvement of in vitro gynogenesis induction in onion (Allium cepa L.) using polyamines. Plant Sci 156(2):221–226

    Article  Google Scholar 

  • Mason PG, Weiss RM, Olfert O, Landry J-F (2011) Actual and potential distribution of an invasive alien Allium spp. pest, Acrolepiopsisassectella (Zeller) (Lepidoptera: Acrolepiidae), in Canada. Can Entomol 143:185–196

    Article  Google Scholar 

  • Matz MV (2018) Fantastic beasts and how to sequence them: ecological genomics for obscure model organisms. Trends Genet 34(2):121–132

    Article  CAS  Google Scholar 

  • McCafferty HR, Moore PH, Zhu YJ (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175(3):385–393

    Article  CAS  Google Scholar 

  • Milberg P, Hallgren E (2004) Yield loss due to weeds in cereals and its large-scale variability in Sweden. Field Crop Res 86(2–3):199–209

    Article  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11(5):825–838

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Morison GD (1957) A review of British glasshouse Thysanoptera. Trans R Entomol Soc Lond 109:467–520

    Article  Google Scholar 

  • Mound LA (1997) Biological diversity. In: Lewis T (ed) Thrips as crop pests. CAB International, New York, NY, pp 197–215

    Google Scholar 

  • Mound LA, Walker AK (1982) Terebrantia (Insecta: Thysanoptera). Fauna of New Zealand No. 1. DSIR, Wellington, New Zealand

    Google Scholar 

  • Murovec J, Bohanec B (2011) Haploids and doubled haploids in plant breeding. Plant Breeding, Dr. Ibrokhim Abdurakhmonov (ed), pp. 87–106

    Google Scholar 

  • Mushtaq N, Wang Y, Fan J, Li Y, Ding J (2022) Down-regulation of cytokinin receptor gene SlHK2 improves plant tolerance to drought, heat, and combined stresses in tomato. Plan Theory 11(2):154

    CAS  Google Scholar 

  • Myers N (1993) Environmental refugees in a globally warmed world. Bioscience 43(11):752–761

    Article  Google Scholar 

  • Nandurkar SR, Thool VR, Thool RC (2014) Design and development of precision agriculture system using wireless sensor network. In: IEEE international conference on automation, control, energy and systems (ACES)

    Google Scholar 

  • Ning S, Wei J, Feng J (2017) Predicting the current potential and future worldwide distribution of the onion maggot, Delia Antiqua using maximum entropy ecological niche modeling. PLoS One 12(2):171–190

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54

    Article  Google Scholar 

  • Pasternak D, Twersky M, De Malach Y (1979) Salt resistance in agricultural crops. Stress Physiol Crop Plants 13:127–135

    Google Scholar 

  • Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR (2011) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Chang 2:2–4

    Article  Google Scholar 

  • Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123

    Article  CAS  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11(6):501–521

    Article  Google Scholar 

  • Rabinowitch HD (2018) Onions and allied crops: Volume II: Agronomy biotic interactions. CRC Press

    Book  Google Scholar 

  • Razi K, Muneer S (2021) Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 41(5):669–691

    Article  CAS  Google Scholar 

  • Ren F, Lu YT (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci 171(2):286–292

    Article  CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci 95(17):9750–9754

    Article  CAS  Google Scholar 

  • Saijo Y, Loo EPI (2020) Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225:87–104

    Article  Google Scholar 

  • Şanlı BA, Öztürk Gökçe ZN (2021) Investigating effect of miR160 through overexpression in potato cultivars under single or combination of heat and drought stresses. Plant Biotechnol Rep 15(3):335–348

    Article  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  CAS  Google Scholar 

  • Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat Rev Genet 15(11):749–763

    Article  Google Scholar 

  • Semida WM, Abdelkhalik A, Rady MO, Marey RA, Abd El-Mageed TA (2020) Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci Hortic 272:109580

    Article  CAS  Google Scholar 

  • Shad RA (1987) Status of weed science activities in Pakistan. Progressive Farming 7:10–16

    Google Scholar 

  • Shannon MC, Grieve CM (1998) Tolerance of vegetable crops to salinity. Sci Hortic 78(1–4):5–38

    Article  Google Scholar 

  • Sharma S, Kooner R, Arora R (2017) Insect pests and crop losses. In: Breeding insect resistant crops for sustainable agriculture. Springer, Singapore, pp 45–66

    Chapter  Google Scholar 

  • Soltani N, Dille JA, Burke IC, Everman WJ, Van Gessel MJ, Davis VM, Sikkema PH (2016) Potential corn yield losses from weeds in North America. Weed Technol 30(4):979–984

    Article  Google Scholar 

  • Straub RW, Emmett B (1992) Pest of monocotyledon crops. In: McKinlay RG (ed) Vegetable crop pests. Macmillan Press, pp 213–262

    Google Scholar 

  • Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4(1):17

    Article  Google Scholar 

  • Tullgren A (1918) Lakmalen (Acrolepiaassectella Zell.) ett i vart land ejforiitiekttaget Skadedjur pa lak. ait22222dfca l. Stockholm 30 11pp

    Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Van Heusden AW, Van Ooijen JW, Vrielink-van Ginkel R, Verbeek WHJ, Wietsma WA, Kik C (2000) A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLPTM) markers. Theor Appl Genet 100(1):118–126

    Article  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72(13):1538–1550

    Article  CAS  Google Scholar 

  • Velitchkevitch AJ (1922) Biological observations on A. assectella Zell., in the Novgorod Governement. (in Russian) Trans. 4th All Russian Ento-Phytopath. Meeting, Moscow. 101 107

    Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Liang A (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24(9):549–555

    Article  CAS  Google Scholar 

  • Wang Q, Terzis A, Szalay A (2010) A novel soil measuring wireless sensor network. In: IEEE transactions on instrumentation and measurement, pp. 412–415

    Google Scholar 

  • Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Zhang J, Wang D, Gan Y (2019) Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol 19(1):1–15

    Article  Google Scholar 

  • Wang Z, Hong Y, Zhu G, Li Y, Niu Q, Yao J, Hua K, Bai J, Zhu Y, Shi H, Huang S (2020) Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. EMBO J 39(10):e103256

    Article  CAS  Google Scholar 

  • Wheeler TR, Ellis RH, Hadley P, Morison JIL, Batts GR, Daymond AJ (1996) Assessing the effects of climate change on field crop production. Asp Appl Biol

    Google Scholar 

  • Wilhite DA (2000) Drought as a natural hazard: concepts and definitions

    Google Scholar 

  • Xiong L, Ishitani M, Zhu JK (1999) Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119(1):205–212

    Article  CAS  Google Scholar 

  • Yencho GC, Bonierbale MW, Tingey WM, Plaisted RL, Tanksley SD (1996) Molecular markers locate genes for resistance to the Colorado potato beetle, Leptinotarsadecemlineata, in hybrid Solanum tuberosum x S. berthaultii potato progenies. Entomol Exp Appl 81(2):141–154

    Article  Google Scholar 

  • Zaynab M, Hussain A, Sharif Y, Fatima M, Sajid M, Rehman N, Yang X, Khan KA, Ghramh HA, Li S (2021) Mitogen-activated protein kinase expression profiling revealed its role in regulating stress responses in potato (Solanum tuberosum). Plan Theory 10(7):1371

    CAS  Google Scholar 

  • Zimdahl RL (2018) Fundamentals of weed science. Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhry, U.K., Junaid, M.D., Gökçe, Z.N.Ö., Gökçe, A.F. (2023). Impact of Biotic and Abiotic Stresses on Onion Production: Potential Mitigation Approaches in Modern Era. In: Singh, S., Sharma, D., Sharma, S.K., Singh, R. (eds) Smart Plant Breeding for Vegetable Crops in Post-genomics Era . Springer, Singapore. https://doi.org/10.1007/978-981-19-5367-5_7

Download citation

Publish with us

Policies and ethics