Skip to main content

Strategies for Synthesis and Chemical Modifications of Chitosan-Based Nanocomposites: A Versatile Material with Extraordinary Potential for Diverse Applications

  • Chapter
  • First Online:
Chitosan-Based Nanocomposite Materials
  • 276 Accesses

Abstract

Chitosan is a bio-functional polysaccharide that has a great potential for applications in various fields owing to its chemical functional groups which can be easily modified to achieve specific goals. Chitosan-based nanomaterials are gaining immense interest from researchers due to their versatile physicochemical and biological properties. In the present chapter, we give a complete overview of the preparation strategies of chitosan nanoparticles, including both novel and green methods. Moreover, we have systematically summarized the modification strategies of chitosan for improving their water solubility, biocompatibility, mechanical properties, and antimicrobial activity, which will help the researchers pick the most appropriate strategy for its particular application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BNNT:

Boron nitride nanotube

Ch:

Chitosan

COS:

Chito oligosaccharide

GTA:

Glutaraldehyde

HMW:

High molecular weight

LCC:

N lauryl-carboxymethyl-chitosan

LMW:

Low molecular weight

NPs:

Nanoparticles

PCDHN:

Physically crosslinked hydrogel double-network

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

QAS:

Quaternized ammonium salt

TEMPO:

(2,2,6,6-tetramethylpiperidin-1-yl)oxyl

TPP:

Sodium tripolyphosphate

References

  1. Abu Elella M (2021) Synthesis and potential applications of modified Xanthan gum. J Chem Eng Res Updates 8:73–97

    Google Scholar 

  2. Aranaz I et al (2012) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    Google Scholar 

  3. Azmana M et al (2021) A review on chitosan and chitosan-based bionanocomposites: promising material for combatting global issues and its applications. Int J Biol Macromol 185(June):832–848

    Article  Google Scholar 

  4. Bagheri-Khoulenjani S, Taghizadeh SM, Mirzadeh H (2009) An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohyd Polym 78(4):773–778

    Article  Google Scholar 

  5. Bano I et al (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383

    Article  Google Scholar 

  6. Boccaccini AR et al (2010) Electrophoretic deposition of biomaterials. J Royal Soc Interface 7(Suppl 5):S581–S613

    Google Scholar 

  7. Brasselet C et al (2019) Modification of chitosan for the generation of functional derivatives. Appl Sci (Switzerland) 9(7)

    Google Scholar 

  8. Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132

    Article  Google Scholar 

  9. Cao J et al (2018) Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. Adv Func Mater 28:1800739

    Article  Google Scholar 

  10. Chang S-H et al (2019) Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int J Biol Macromol 131:167–175

    Article  Google Scholar 

  11. Chebotok EN, Yu V, Novikov, Konovalova IN (2006)Depolymerization of chitin and chitosan in the course of base deacetylation.Russ J Appl Chem 79(7):1162–1166

    Google Scholar 

  12. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49(4):780–792

    Article  Google Scholar 

  13. Dal Pozzo A et al (2000)Preparation and characterization of poly(ethyleneglycol)-crosslinked reacetylated chitosans.Carbohyd Polym 42:201–206

    Google Scholar 

  14. Ding S, Wang Y, Li J, Chen S (2021) Progress and prospects in chitosan derivatives: modification strategies and medical applications. J Mater Sci Technol 89:209–224

    Article  Google Scholar 

  15. Ding W, Lian Q, Samuels RJ, Polk MB (2003)Synthesis and characterization of a novel derivative of chitosan.Polymer 44:547–556

    Google Scholar 

  16. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009)Perspectives for chitosan based antimicrobial films in food applications.Food Chem 114(4):1173–1182

    Google Scholar 

  17. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C Mater Biol Appl 33(4):1819–41

    Google Scholar 

  18. Gadkari RR et al (2019) Green synthesis of chitosan-cinnamaldehyde cross-linked nanoparticles: characterization and antibacterial activity. Carbohyd Polym 226:115298. https://doi.org/10.1016/j.carbpol.2019.115298

    Article  Google Scholar 

  19. Ghosh A, Ali M (2012) Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J Mater Sci 47:1196–1204

    Article  ADS  Google Scholar 

  20. Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300

    Article  Google Scholar 

  21. Hu Z et al (2018) Investigation of the effects of molecular parameters on the hemostatic properties of chitosan. Molecules (Basel, Switzerland) 23(12)

    Google Scholar 

  22. Huang HY, Shieh YT, Shih CM, Twu YK (2010) Magnetic chitosan/iron (II, III) oxide nanoparticles prepared by spray-drying. Carbohyd Polym 81(4):906–910. https://doi.org/10.1016/j.carbpol.2010.04.003

    Article  Google Scholar 

  23. Ibañez-Peinado D, Ubeda-Manzanaro M, Martínez A, Rodrigo D (2020) Antimicrobial effect of insect chitosan on Salmonella typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes survival. PLoS ONE 15:1–14, 12 Dec 2020

    Google Scholar 

  24. Ichikawa H, Tokumitsu H, Miyamoto M, Fukumori Y (2007) Nanoparticles for neutron capture therapy of cancer. In: 6 Nanotechnologies for the life sciences

    Google Scholar 

  25. Inamdar N, Mourya VK, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1:11–33

    Article  Google Scholar 

  26. Islam S, Rahman Bhuiyan MA, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25(3):854–866

    Article  Google Scholar 

  27. Jameela SR, Kumary TV, Lal AV, Jayakrishnan A (1998) Progesterone-loaded chitosan microspheres: a long acting biodegradable controlled delivery system. J Control Release 52:17–24. Jameela1998.Pdf

    Google Scholar 

  28. Jintapattanakit A et al (2007) Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm 342(1–2):240–249

    Article  Google Scholar 

  29. Hemant Yadav KS, Joshi GB, Singh MN, HG Shivakumar (2010) Naturally occurring chitosan and chitosan derivatives: a review.Current Drug Therapy 6(1):2–11

    Google Scholar 

  30. Kaczmarek MB et al (2019) Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotechnol 7(SEP)

    Google Scholar 

  31. Kafshgari MH et al (2012) Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym J (English Edition) 21(2):99–107

    Article  Google Scholar 

  32. Kato Y, Onishi H, Machida Y (2000) Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer. Biomaterials 21(15):1579–1585

    Article  Google Scholar 

  33. Kato Y, Onishi H, Machida Y (2005) Contribution of chitosan and its derivatives to cancer chemotherapy. In Vivo (Athens, Greece) 19(1):301–310

    Google Scholar 

  34. Keefe AJ, Jiang S (2011) Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 4(1):59–63

    Article  Google Scholar 

  35. Khanafari A, Marandi R, Sanatei S (2008) Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J Environ Health Sci Eng 5(1):19–24

    Google Scholar 

  36. Kim I-Y et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26(1):1–21

    Article  Google Scholar 

  37. Kim S (2018) Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 2018:1708172 [Tao Y (ed)]

    Google Scholar 

  38. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Google Scholar 

  39. Krawczak P (2019) Editorial corner—a personal view: polymer composites: evolve towards multifunctionality or perish. Express Polym Lett 13(9):771

    Article  Google Scholar 

  40. Kritchenkov AS et al (2020) Efficient reinforcement of chitosan-based coatings for ricotta cheese with non-toxic, active, and smart nanoparticles. Prog Org Coat 145(April):105707

    Article  Google Scholar 

  41. Lee K-W et al (2007) Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8(4):1077–1084

    Article  Google Scholar 

  42. Leitner VM, Walker GF, Bernkop-Schnürch A (2003) Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 56(2):207–214

    Google Scholar 

  43. Li Y, Wang X, Wei Y, Tao L (2017) Chitosan-based self-healing hydrogel for bioapplications. Chin Chem Lett 28(11):2053–2057

    Article  Google Scholar 

  44. Lin Y, Chen Q, Luo H (2007) Preparation and characterization of N-(2-carboxybenzyl)chitosan as a potential PH-sensitive hydrogel for drug delivery. Carbohyd Res 342(1):87–95

    Article  Google Scholar 

  45. Lin Z et al (2021) Preparation of chitosan/calcium alginate/bentonite composite hydrogel and its heavy metal ions adsorption properties. Polymers 13(11)

    Google Scholar 

  46. Liu S et al (2022) Biocompatible gradient chitosan fibers with controllable swelling and antibacterial properties. Fibers Polym 23(1):1–9

    Article  Google Scholar 

  47. Lodhi G et al (2014) Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Res Int 2014:654913

    Article  Google Scholar 

  48. Miwa A et al (1998) Development of novel chitosan derivatives as micellar carriers of taxol. Pharm Res 15(12):1844–1850

    Article  Google Scholar 

  49. Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J Macromol Sci Part A 31(5):629–642

    Article  Google Scholar 

  50. Okamoto Y et al (2002) Analgesic effects of chitin and chitosan. Carbohyd Polym 49(3):249–252

    Article  Google Scholar 

  51. Onishi H, Takahashi H, Yoshiyasu M, Machida Y (2001) Preparation and in vitro properties of N-succinylchitosan- or carboxymethylchitin-mitomycin C conjugate microparticles with specified size. Drug Dev Ind Pharm 27(7):659–667

    Article  Google Scholar 

  52. Pan M et al (2018) Porous chitosan microspheres containing zinc ion for enhanced thrombosis and hemostasis. Mater Sci Eng C Mater Biol Appl 85:27–36

    Article  Google Scholar 

  53. Park BK, Kim M-M (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11(12):5152–5164

    Article  Google Scholar 

  54. Potara M et al (2011) Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 22(13):135101

    Article  ADS  Google Scholar 

  55. Qin Y, Xingmei L, Sun N, Rogers RD (2010)Dissolution or extraction of Crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers.Green Chem 12(6):968–997

    Google Scholar 

  56. Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers 10(3):1–32

    Article  Google Scholar 

  57. Rahman Bhuiyan MA et al (2017) Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use. J Polym Environ 25(2):334–342

    Article  Google Scholar 

  58. Reighard KP et al (2017) Role of nitric oxide-releasing chitosan oligosaccharides on mucus viscoelasticity. ACS Biomater Sci Eng 3(6):1017–1026

    Google Scholar 

  59. Riegger BR et al (2018) Chitosan nanoparticles via high-pressure homogenization-assisted miniemulsion crosslinking for mixed-matrix membrane adsorbers. Carbohyd Polym 201:172–181. https://doi.org/10.1016/j.carbpol.2018.07.059

    Article  Google Scholar 

  60. Sannan T, Kurita K, Iwakura Y (2003) Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromolekulare Chemie 177:3589–3600

    Article  Google Scholar 

  61. Serhan M et al (2019) Total iron measurement in human serum with a smartphone. In: AIChE annual meeting, conference proceedings, Nov 2019

    Google Scholar 

  62. Shariatinia Z (2019) Pharmaceutical applications of chitosan. Adv Coll Interface Sci 263:131–194

    Article  Google Scholar 

  63. Singh R, Shitiz K, Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14(6):1276–1289

    Article  Google Scholar 

  64. Sivanesan I et al (2021) Nanoforms/nanocomposites for drug delivery applications, 1–21

    Google Scholar 

  65. Song Y, Onishi H, Nagai T (1993) Pharmacokinetic characteristics and antitumor activity of the N-succinyl-chitosan-mitomycin C conjugate and the carboxymethyl-chitin-mitomycin C conjugate. Biol Pharm Bull 16(1):48–54

    Article  Google Scholar 

  66. Susilowati E, Maryani, Ashadi (2019) Green synthesis of silver-chitosan nanocomposite and their application as antibacterial material. J Phys Conf Ser 1153(1)

    Google Scholar 

  67. Tan H, Chu C, Payne K, Marra K (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  Google Scholar 

  68. Teng WL et al (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohyd Res 332(3):305–316

    Article  Google Scholar 

  69. Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52(2):117–126

    Article  Google Scholar 

  70. Tyagi P et al (2019) High-strength antibacterial chitosan-cellulose nanocrystal composite tissue paper. Langmuir ACS J Surf Colloids 35(1):104–112

    Article  Google Scholar 

  71. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohyd Polym 164:268–283

    Article  Google Scholar 

  72. Wang N et al (2020) Antibacterial effect of chitosan and its derivative on Enterococcus faecalis associated with endodontic infection. Exp Ther Med 19(6):3805–3813

    Google Scholar 

  73. Wang YW et al (2019) Biological effects of chitosan-based dressing on hemostasis mechanism. Polymers 11(11)

    Google Scholar 

  74. Wijesena RN et al (2015) A method for top down preparation of chitosan nanoparticles and nanofibers. Carbohyd Polym 117:731–738. https://doi.org/10.1016/j.carbpol.2014.10.055

    Article  Google Scholar 

  75. Yanat M, Schroën K (2021) Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React Funct Polym 161(Feb)

    Google Scholar 

  76. Yang J et al (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res Part B Appl Biomater 84(1):131–137

    Google Scholar 

  77. Yang J et al (2020) Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Compos B Eng 197:108139

    Article  Google Scholar 

  78. Yang Y et al (2014) Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 32(7):1301–1316.https://doi.org/10.1016/j.biotechadv.2014.07.007

  79. Younes I et al (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47(12):2032–2039. https://doi.org/10.1016/j.procbio.2012.07.017

    Article  Google Scholar 

  80. Zhang L et al (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31(6):553–556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Gulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansi, Gulati, S., Amar, A. (2022). Strategies for Synthesis and Chemical Modifications of Chitosan-Based Nanocomposites: A Versatile Material with Extraordinary Potential for Diverse Applications. In: Gulati, S. (eds) Chitosan-Based Nanocomposite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-5338-5_2

Download citation

Publish with us

Policies and ethics