Skip to main content

Triticale (X Triticosecale Wittmack): Role and Responses Under Abiotic Stress

  • Chapter
  • First Online:
Sustainable Remedies for Abiotic Stress in Cereals

Abstract

Triticale (X Triticosecale Wittmack) is an allotetraploid and man-made cereal generated by the initial crossing between wheat (Triticum) and rye (Secale) with an AABBRR genome, hoping to combine different indices of high yield potential and quality grain protein of wheat and high resistance to abiotic stresses of rye. In the meantime, although suitable traits such as high-yielding storage and grains have been transferred to the mentioned plant, it is still sensitive to most abiotic stresses. However, there are several approaches, including planting-resistant cultivars, alternative cultivation, intercropping, bio-fertilizers, etc., to overcome abiotic stresses, e.g., drought, salinity, temperature, elements, and others. In general, since triticale is a promising crop hybrid that can be a good alternative to cultivating cereals in adverse environmental conditions, appropriate strategies to overcome the adverse effects of abiotic factors should be considered, and further studies are needed to understand this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu OA, Ismael FM, Al-Abdullah MJ, Jamjum K, Al-Rifaee MK, Tawaha AM, Dakheel A (2017) Impact of different levels of salinity on performance of triticale that is grown in Al-Khalidiyah (Mafraq), Jordan. Am Eur J Sustain Agric 11(1):1–6

    Google Scholar 

  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23(4):731–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181. https://doi.org/10.1016/j.micres.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  • Akbarian A, Arzani A, Salehi M, Salehi M (2011) Evaluation of triticale genotypes for terminal drought tolerance using physiological traits. Indian J Agric Sci 81(12):1110

    Google Scholar 

  • Akgün İ, Burhan KARA, Altindal D (2011) Effect of salinity (NaCl) on germination, seedling growth and nutrient uptake of different triticale genotypes. Turk J Field Crops 16(2):225–232

    Google Scholar 

  • Alcázar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180(1):31–38

    Article  PubMed  Google Scholar 

  • Al-Ghamdi AAM, Hajar AAS, Ayman E, Abutaki NA, El-Zohri M (2021) The effect of drought stress on Triticosecale rimpaui growth and crop yield production. Biosci Res 18(2):1667–1680

    Google Scholar 

  • Anjum NA, Gill SS, Khan I, Gill R (2014) Environmental change, and plant amino acids and their derivatives—an introduction. In: Plant adaptation to environmental change: significance of amino acids and their derivatives. CABI International, Wallingford, pp 1–17

    Chapter  Google Scholar 

  • Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y, Ait Chitt M, Oufdou K, Mitsui T, Hafidi M, Meddich A (2020) Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci 11:516818. https://doi.org/10.3389/fpls.2020.516818

    Article  PubMed  PubMed Central  Google Scholar 

  • Arseniuk E (1996) Triticale diseases-a review. In: Triticale: today and tomorrow. Springer, Dordrecht, pp 499–525. https://doi.org/10.1007/978-3-319-22551-7_4

    Chapter  Google Scholar 

  • Arseniuk E, Góral T (2015) Triticale biotic stresses—known and novel foes. In: Triticale. Springer, Cham, pp 83–108

    Chapter  Google Scholar 

  • Atak M, Kaya MD, Kaya G, Çikili Y, Çiftçi CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk J Agric For 30(1):39–47

    CAS  Google Scholar 

  • Ayalew H, Kumssa TT, Butler TJ, Ma XF (2018) Triticale improvement for forage and cover crop uses in the southern Great Plains of the United States. Front Plant Sci 9:1130. https://doi.org/10.3389/fpls.2018.01130

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezabih A, Girmay G, Lakewu A (2019) Performance of triticale varieties for the marginal highlands of Wag-Lasta, Ethiopia. Cogent Food Agric 5(1):1574109. https://doi.org/10.1080/23311932.2019.1574109

    Article  Google Scholar 

  • Biel W, Kazimierska K, Bashutska U (2020) Nutritional value of wheat, triticale, barley and oat grains. Acta Sci Pol Zootechnica 19(2):19–28

    Article  Google Scholar 

  • Borde M, Dudhane M, Jite P (2011) Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Prot 30(3):265–271. https://doi.org/10.1016/j.cropro.2010.12.010

    Article  CAS  Google Scholar 

  • Brezoczki VM, Filip GM (2016) The heavy metal ions (Cu2+, Zn2+, Cd+) toxic compounds influence on triticale plants growth. IOP Conf Ser Mater Sci Eng 200:012025

    Article  Google Scholar 

  • Chandra P, Wunnava A, Verma P, Chandra A, Sharma RK (2021) Strategies to mitigate the adverse effect of drought stress on crop plants-influences of soil bacteria: a review. Pedosphere 31(3):496–509

    Article  CAS  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945. https://doi.org/10.3389/fpls.2018.01945

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhindsa GS, Dosanjh AS, Sohu VS, Dhindsa JS, Goyali JC (2002) Genotype × environment interaction for yield components in hexaploid triticale. In: Proceeding of the 5th International triticale symposium, Radzikow, Poland

    Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Dumbravă M, Bășa AG, Ion V, Epure LI, Dincă N, Ștefan D (2014) Results regarding yield and yield components at different triticale varieties. Sci Pap Ser A Agron 57:174–179

    Google Scholar 

  • Ehtaiwesh AFA (2016) Effects of salinity and high temperature stress on winter wheat genotypes. Doctoral dissertation, Kansas State University

    Google Scholar 

  • El-Haddad ME, Ishac YZ, Mostafa MI (1993) The role of biofertilizers in reducing agricultural costs, decreasing environmental pollution and raising crop yield. Arab Univ J Agric Sci 1:147–195

    Google Scholar 

  • Emebiri L, Singh PK, Tan MK, Fuentes-Davila G, He X, Singh RP (2019) Reaction of Australian durum, common wheat and triticale genotypes to Karnal bunt (Tilletia indica) infection under artificial inoculation in the field. Crop Pasture Sci 70(2):107–112

    Article  Google Scholar 

  • Estrada-Campuzano G, Miralles DJ, Slafer GA (2008) Genotypic variability and response to water stress of pre-and post-anthesis phases in triticale. Eur J Agron 28(3):171–177. https://doi.org/10.1016/j.eja.2007.07.005

    Article  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689. https://doi.org/10.1007/s00018-014-1767-0

    Article  CAS  PubMed  Google Scholar 

  • FAO (2021) World Food and Agriculture – Statistical Yearbook 2021. Rome. https://doi.org/10.4060/cb4477en

  • Fazeli M, Naderi D (2019) Effects of 6-Benzylaminopurine and salinity stress on flowering and biochemical characteristics of winter jasmine (Jasminum nudiflorum L.). J Ornament Plants 9(1):41–53

    Google Scholar 

  • Gaudet DA, Fuentes-Davila G, De Pauw RM, Burnett PA (2001) Reactions of western Canadian spring wheat and triticale varieties to Tilletia indica, the causal agent of Karnal bunt. Can J Plant Sci 81(3):503–508

    Article  Google Scholar 

  • Gendy AS, Said-Al Ahl HA, Mahmoud AA, Mohamed HF (2013) Effect of nitrogen sources, bio-fertilizers and their interaction on the growth, seed yield and chemical composition of guar plants. Life Sci J 10(3):389–402

    Google Scholar 

  • Gerema G, Mamo K, Birhanu C, Debela M, Dessalegn K, Chemeda G, Kebede M, Gudisa B, Feyisa H, Mangistu G, Lule D, Bedada G (2020) Registration of a new triticale variety: ‘Kombolcha’. East Afr J Sci 14(2):169–174

    Google Scholar 

  • Ghorbani M, Ramazani SHR, Fallahi HR, Mousavi Koohi SM (2019) Effect of drought stress and bio-fertilizer on yield and yield components of guar (Cyamopsis tetragonoloba L.) Taub. J Med Plants By-Product 8(1):13–19

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, Wallingford

    Book  Google Scholar 

  • Giunta F, Motzo R, Deidda M (1993) Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crop Res 33(4):399–409

    Article  Google Scholar 

  • Glamočlija N, Starčević M, Ćirić J, Šefer D, Glišić M, Baltić MŽ, Marković R, Spasić M, Glamočlija Đ (2018) The importance of triticale in animal nutrition. Vet J Rep Srpska 18(1):73–94. https://doi.org/10.7251/VETJEN1801073G

    Article  Google Scholar 

  • Gobeze L, Waga M, Legese H (2007) Effect of varieties and seeding rates on grain yield of triticale (Triticosecale wittmark) in different agro-ecologies of southern Ethiopia. In: 8th African crop science society conference. El-Minia, Egypt

    Google Scholar 

  • Godoy F, Olivos-Hernández K, Stange C, Handford M (2021) Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plan Theory 10(2):186

    CAS  Google Scholar 

  • Gonzalez A, Bermejo V, Gimeno BS (2010) Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. J Agric Sci 148(3):319

    Article  CAS  Google Scholar 

  • Groppa M, Benavides M (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45. https://doi.org/10.1007/s00726-007-0501-8

    Article  CAS  PubMed  Google Scholar 

  • Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14(9):764–773

    Article  Google Scholar 

  • Hammad ZH (2012) Physicochemical studies on irradiated triticale seeds. Master thesis of Agricultural Sciences, Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161(3):297–307

    Article  CAS  PubMed  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Article  Google Scholar 

  • Hills MJ, Hall LM, Messenger DF, Graf RJ, Beres BL, Eudes F (2007) Evaluation of crossability between triticale (X Triticosecale Wittmack) and common wheat, durum wheat and rye. Environ Biosafety Res 6(4):249–257

    Article  PubMed  Google Scholar 

  • Hlaváčová M, Klem K, Smutná P, Škarpa P, Hlavinka P, Novotná K, Rapantová B, Trnka M (2017) Effect of heat stress at anthesis on yield formation in winter wheat. Plant Soil Environ 63(3):139–144

    Article  Google Scholar 

  • Hossain MS (2019) Present scenario of global salt affected soils, its management and importance of salinity research. Int Res J Biol Sci 1(1):1–3

    Google Scholar 

  • Hossain A, Skalicky M, Brestic M, Maitra S, Ashraful Alam M, Syed MA, Hossain J, Sarkar S, Saha S, Bhadra P, Shankar T, Bhatt R, Chaki AK, El-Sabagh A, Islam T (2021) Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11(2):241

    Article  CAS  Google Scholar 

  • Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K (2015) Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of X Triticosecale Wittm. PLoS One 10(8):1–12. https://doi.org/10.1371/journal.pone.0135002

    Article  CAS  Google Scholar 

  • Ibrahim M, Ayub M, Maqbool MM, Nadeem SM, Haq T u, Hussain S, Ali A, Lauriault LM (2014) Forage yield components of irrigated maize–legume mixtures at varied seed ratios. Field Crop Res 169:140–144. https://doi.org/10.1016/j.fcr.2014.08.013

    Article  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15(4):574. https://doi.org/10.3390/ijerph15040574

    Article  CAS  PubMed Central  Google Scholar 

  • Inoue T, Inanaga S, Sugimoto Y, An P, Eneji AE (2004) Effect of drought on ear and flag leaf photosynthesis of two wheat cultivars differing in drought resistance. Photosynthetica 42(4):559–565

    Article  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947. https://doi.org/10.1093/jxb/err003

    Article  CAS  PubMed  Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX (2016) Can arbuscular mycorrhizal fungi reduce cd uptake and alleviate cd toxicity of Lonicera japonica grown in cd-added soils? Sci Rep 6(1):1–9. https://doi.org/10.1038/srep21805

    Article  CAS  Google Scholar 

  • Jorgensen H, Thomsen ST, Schjoerring JK (2020) The potential for biorefining of triticale to protein and sugar depends on nitrogen supply and harvest time. Ind Crop Prod 149:112333. https://doi.org/10.1016/j.indcrop.2020.112333

    Article  CAS  Google Scholar 

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl Sci 10(16):5692. https://doi.org/10.3390/app10165692

    Article  CAS  Google Scholar 

  • Khanal U, Stott KJ, Armstrong R, Nuttall JG, Henry F, Christy BP, Mitchell M, Riffkin PA, Wallace AJ, McCaskill M, Thayalakumaran T, O’Leary GJ (2021) Intercropping—evaluating the advantages to Broadacre systems. Agriculture 11(5):453. https://doi.org/10.3390/agriculture11050453

    Article  Google Scholar 

  • Kheirizadeh Arough Y, Seyed Sharifi R, Seyed Sharifi R (2016) Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. J Plant Interact 11(1):167–177. https://doi.org/10.1080/17429145.2016.1262914

    Article  CAS  Google Scholar 

  • Killiny N, Nehela Y (2020) Citrus polyamines: structure, biosynthesis, and physiological functions. Plan Theory 9(4):426. https://doi.org/10.3390/plants9040426

    Article  CAS  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, NY, pp 1–28. https://doi.org/10.1007/978-1-4614-0815-4_1

    Chapter  Google Scholar 

  • Krusteva H, Karadjova O (2011) Impacts of triticale crop sowing date on the insect pest species composition and damage caused. Bulgarian J Agric Sci 17(4):411–416

    Google Scholar 

  • László M (2009) Triticale (X Triticosecale W.) heavy metal upptake as a possibility of food chain pollution in a long-term field experiment in Hungary. Geophysical Research Abstracts 11

    Google Scholar 

  • Lelley T (2006) Triticale: a low-input cereal with untapped potential. Genet Resour Chrom Eng Crop Improv 2:395–430

    Article  CAS  Google Scholar 

  • Li Y, Ma L, Wu P, Zhao X, Chen X, Gao X (2020) Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Field Crop Res 248:107656. https://doi.org/10.1016/j.fcr.2019.107656

    Article  Google Scholar 

  • Liu W, Maurer HP, Leiser WL, Tucker MR, Weissmann S, Hahn V, Würschum T (2017) Potential for marker-assisted simultaneous improvement of grain and biomass yield in triticale. Bioenergy Res 10(2):449–455

    Article  Google Scholar 

  • Lonbani M, Arzani A (2011) Morpho-physiological traits associated with terminal drought-stress tolerance in triticale and wheat. Agron Res 9(1–2):315–329

    Google Scholar 

  • Lule D, Tesfaye K, Mengistu G (2014) Genotype by environment interaction and grain yield stability analysis for advanced triticale (X Triticosecale wittmack) genotypes in western Oromia, Ethiopia. SINET 37(1):63–68

    Google Scholar 

  • Luo K, Xie C, Wang J, Du Q, Cheng P, Wang T, Wu Y, Yang W, Yong T (2021) Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize–soybean relay strip intercropping system. J Plant Growth Regul 40(5):1869–1880. https://doi.org/10.1007/s00344-020-10236-8

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30(5):595–618

    Article  CAS  Google Scholar 

  • Martin-Guay MO, Paquette A, Dupras J, Rivest D (2018) The new green revolution: sustainable intensification of agriculture by intercropping. Sci Total Environ 615:767–772

    Article  CAS  PubMed  Google Scholar 

  • Matilla AJ (1996) Polyamines and seed germination. Seed Sci Res 6(3):81–93

    Article  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu RK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mergoum M, Macpherson HG (2004) Triticale improvement and production. Food and Agriculture Organization, Rome

    Google Scholar 

  • Mergoum M, Ryan J, Shroyer JP, Monem MA (1992) Potential for adopting triticale in Morocco. J Nat Resour Life Sci Educ 21(2):137–141

    Article  Google Scholar 

  • Mergoum M, Singh PK, Pena RJ, Lozano-del Río AJ, Cooper KV, Salmon DF, Macpherson HG (2009) Triticale: a “new” crop with old challenges. In: Cereals. Springer, New York, NY, pp 267–287

    Chapter  Google Scholar 

  • Mergoum M, Sapkota S, ElDoliefy AEA, Naraghi SM, Pirseyedi S, Alamri MS, AbuHammad W (2019) Triticale (x Triticosecale Wittmack) breeding. In: Advances in plant breeding strategies: cereals. Springer, Cham, pp 405–451

    Chapter  Google Scholar 

  • Michas G, Giannakopoulos E, Petropoulos G, Kargiotidou A, Vlachostergios D, Tziouvalekas M (2020) The growth of triticale (X Triticosecale wittm.) in multi-metal contaminated soils by use of zeolite: a pilot plant study. Curr Environ Manag 7(1):55–66. https://doi.org/10.2174/2666214007666200818113057

    Article  CAS  Google Scholar 

  • Mohammadi Alagoz S, Hadi H, Toorchi M, Pawlowski TA, Tajbakhsh Shishavan M (2021) Effects of water deficiency at different phenological stages on oxidative defense, ionic content, and yield of triticale (× Triticosecale Wittmack) irrigated with saline water. J Soil Sci Plant Nutr 22:99–111. https://doi.org/10.1007/s42729-021-00635-5

    Article  CAS  Google Scholar 

  • Mohsen AA, Ebrahim MKH, Ghoraba WFS (2013) Effect of salinity stress on Vicia faba productivity with respect to ascorbic acid treatment. Iran J Plant Physiol 3(3):725–736

    Google Scholar 

  • Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40(1):381–410

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2002) Triticale: a promising addition to the world’s cereal grains. The Minerva Group, Inc.

    Google Scholar 

  • Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temperature 4(4):371–405

    Article  Google Scholar 

  • Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, Khan YJ, Chauhan DK, Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7(4):239. https://doi.org/10.1007/s13205-017-0870-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawar PB, Melo JS, Kotkar HM, Kulkarni MV (2018) Role of indigenous mycorrhizal species in enhancing physiological and biochemical status, nutrient acquisition and yield pattern of groundnut (Arachis hypogaea L.). J Crop Sci Biotechnol 21(1):23–33

    Article  Google Scholar 

  • Peña RJ (1996) Factors affecting triticale as a food crop. In: Triticale: today and tomorrow. Springer, Dordrecht, pp 753–762

    Chapter  Google Scholar 

  • Ramazani SHR (2020) Effects of intercropping of triticale cultivars on some morphological, yield, and yield component traits. J Crops Improv 22(4):499–512

    Google Scholar 

  • Ramazani SHR, Izanloo A (2019) Evaluation of drought tolerance of triticale (xTriticosecale Wittm. ex A. Camus) genotypes along with bread wheat and barley genotypes. Acta Agric Slovenica 113(2):337–348

    Article  Google Scholar 

  • Ramazani SHR, Taherpour Kalantari R (2019) Evaluating the effect of sowing date and drought stress on morphological and functional characteristics of three genotypes of winter oilseed rape (Brassica napus L.). Acta Agric Slov 113(1):63–74

    Article  Google Scholar 

  • Ramazani SHR, Tajalli H, Ghoudsi M (2016) Evaluation of grain yield stability of superior triticale genotypes. Bulgarian J Agr Sci 22(6):976–981

    Google Scholar 

  • Ramazani SHR, Ghazvini H, Jalal Kamali MR, Arazmjoo E (2018) Allelic distribution in some of dwarfing genes in Iranian wheat (Triticum aestivum L.) genotypes. J Crop Breed 10(26):1–11

    Article  Google Scholar 

  • Randhawa HS, Bona L, Graf RJ (2015) Triticale breeding—progress and prospect. In: Triticale. Springer, Cham, pp 15–32

    Chapter  Google Scholar 

  • Rao K, Raghavendra A, Reddy K (2006) Physiology and molecular biology of stress tolerance. Springer, Dordrecht, pp 1–14

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8(2):34. https://doi.org/10.3390/plants8020034

    Article  CAS  Google Scholar 

  • Roohi E, Tahmasebi SZ, Modares SS, Sioseh MA (2013) Comparative study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley. J Agric Sci Technol 15:215–228

    Google Scholar 

  • Salehi M, Arzani A (2013) Grain quality traits in triticale influenced by field salinity stress. Aust J Crop Sci 7(5):580–587

    CAS  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Drought stress tolerance in plants. Springer, Cham, pp 1–16

    Google Scholar 

  • Schütz L, Gattinger A, Meier M, Müller A, Boller T, Mäder P, Mathimaran N (2018) Improving crop yield and nutrient use efficiency via biofertilization—a global meta-analysis. Front Plant Sci 8:2204. https://doi.org/10.3389/fpls.2017.02204

    Article  PubMed  PubMed Central  Google Scholar 

  • Sergiev I, Todorova D, Katerova Z, Brambilla I, Mapelli S, Simova S (2018) Polyamines and amino acids in triticale plants grown on humic acids enriched nutrient solution and treated with UV-B irradiation. Theor Exp Plant Physiol 30(2):153–163

    Article  CAS  Google Scholar 

  • Shahmoradi H, Naderi D (2018) Improving effects of salicylic acid on morphological, physiological and biochemical responses of salt-imposed winter jasmine. Int J Hortic Sci Technol 5(2):219–230

    CAS  Google Scholar 

  • Shanazari M, Golkar P, Mirmohammady Maibody AM (2018) Effects of drought stress on some agronomic and bio-physiological traits of Trititicum aestivum, triticale, and Tritipyrum genotypes. Arch Agron Soil Sci 64(14):2005–2018

    Article  Google Scholar 

  • Silva AN, Ramos MLG, Ribeiro WQ, Alencar ER, Silva PC, Lima CA, Vinson CC, Silva MAV (2020) Water stress alters physical and chemical quality in grains of common bean, triticale and wheat. Agric Water Manag 231:106023. https://doi.org/10.1016/j.agwat.2020.106023

    Article  Google Scholar 

  • Simões-Araújo JL, Rumjanek NG, Margis-Pinheiro M (2003) Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz J Plant Physiol 15(1):33–41

    Article  Google Scholar 

  • Smartt J (1976) In: Simmonds NW (ed) Evolution of crop plants (no. 631.58 E9/2 pt.). Longman, London

    Google Scholar 

  • Tavakoli Neko H, Shirvany A, Assareh MH, Naghavi MR, Pessarakli M, Pourmeidani A (2018) Effects of NaCl on growth, yield and ion concentration of various Populus euphratica Oliv. Ecotypes in Iran. Desert 23(2):189–198

    Google Scholar 

  • Tuna AL, Kaya C, Altunlu H, Ashraf M (2013) Mitigation effects of non-enzymatic antioxidants in maize (‘Zea mays’ L.) plants under salinity stress. Aust J Crop Sci 7(8):1181–1188. https://doi.org/10.3389/fpls.2017.02204

    Article  Google Scholar 

  • Upadhyay D, Budhlakoti N, Singh AK, Bansal R, Kumari J, Chaudhary N, Padaria JC, Sareen S, Kumar S (2020) Drought tolerance in Triticum aestivum L. genotypes associated with enhanced antioxidative protection and declined lipid peroxidation. 3 Biotech 10(6):281. https://doi.org/10.1007/s13205-020-02264-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wu X, Ding G, Yang F, Yong T, Wang X, Yang W (2020) Analysis of grain yield differences among soybean cultivars under maize–soybean intercropping. Agronomy 10(1):110. https://doi.org/10.3390/agronomy10010110

    Article  CAS  Google Scholar 

  • Wójcik-Gront E, Studnicki M (2021) Long-term yield variability of triticale (× Triticosecale Wittmack) tested using a CART model. Agriculture 11(2):92. https://doi.org/10.3390/agriculture11020092

    Article  CAS  Google Scholar 

  • Wójtowicz A, Wójtowicz M, Sigvald R, Czernecki B, Ratajkiewicz H, Łacka A, Zacharczuk M, Pasternak M (2020) Assessment of the impact of climate change on the latency period of leaf rust on triticale in Poland. Acta Agric Scand Sect B Soil Plant Sci 70(3):195–207. https://doi.org/10.1080/09064710.2019.1696394

    Article  CAS  Google Scholar 

  • Xu L (2015) The effect of polyamineon flower bud differentiation and bud germination of chrysanthemum. Shandong Agric Univ 2:31–36

    Google Scholar 

  • Xu L, Han L, Huang B (2011) Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. J Am Soc Hortic Sci 136(4):247–255

    Article  CAS  Google Scholar 

  • Yang SY (2018) Trends of world cereals and pulses following the human populations. Biomedical J Sci Tech Res 11(3):8509–8512. https://doi.org/10.26717/BJSTR.2018.11.002098

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Hamid Reza Ramazani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramazani, S.H.R., Zabet, M. (2022). Triticale (X Triticosecale Wittmack): Role and Responses Under Abiotic Stress. In: Abdel Latef, A.A.H. (eds) Sustainable Remedies for Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-5121-3_9

Download citation

Publish with us

Policies and ethics