Skip to main content

Sorghum: Role and Responses Under Abiotic Stress

  • Chapter
  • First Online:
Sustainable Remedies for Abiotic Stress in Cereals

Abstract

Sorghum is an important staple crop that can also be used as an alternative source of energy, human food, animal feed, and other industrial purposes throughout the world. Despite the fact that sorghum is a tolerant crop, extreme environmental conditions and poor agriculture systems reduced the nutritional quality and productivity of the crop. Understanding the effects of stress and plant response is essential for developing more stress-tolerant plants with higher quality. As sorghum has a small genome size, this makes it a model species for genetic and genomic studies to develop tolerant species. In this chapter, we will discuss the use of marker-assisted breeding and other advanced molecular studies to improve sorghum tolerance to drought, salinity, cold, heavy metal stress, etc. The negative impact of abiotic stress on sorghum growth and development, such as osmotic potential, which impedes germination and embryonic structures, and photosynthetic rates, manifested in the form of significant reductions in grain yield and quality will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Ullah F, Ben-Hur A, Reddy A (2020) Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. Int J Mol Sci 21(3):772. https://doi.org/10.3390/ijms21030772

    Article  CAS  PubMed Central  Google Scholar 

  • Abreha KB, Enyew M, Carlsson AS (2022) Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta 255:20

    Article  CAS  Google Scholar 

  • Afzal I, Imran S, Javed T, Tahir A, Kamran M, Shakeel Q, Siddiqui MH (2022) Alleviation of temperature stress in maize by integration of foliar applied growth promoting substances and sowing dates. PLoS One 17(1):e0260916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad F, Kamal A (2021) Oxidative stress alleviation by modulation of the antioxidant system under environmental stressors. In: Organic solutes, oxidative stress, and antioxidant enzymes under abiotic stressors. CRC Press, Boca Raton, pp 191–212

    Chapter  Google Scholar 

  • Ahmad F, Singh A, Kamal A (2019) Chapter 23—Salicylic acid–mediated defense mechanisms to abiotic stress tolerance. In: Khan MIR, Reddy PS, Ferrante A, Khan NA (eds) Plant signaling molecules. Woodhead Publishing, Sawston, pp 355–369

    Chapter  Google Scholar 

  • Ahmad F, Singh A, Kamal A (2020) Osmoprotective role of sugar in mitigating abiotic stress in plants. In: Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley, New York, pp 53–70

    Chapter  Google Scholar 

  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21(7):2590

    Article  CAS  PubMed Central  Google Scholar 

  • Akman H, Zhang C, Ejeta G (2021) Physio-morphological, biochemical, and anatomical traits of drought-tolerant and susceptible sorghum cultivars under pre-and post-anthesis drought. Physiol Plant 172(2):912–921

    Article  CAS  PubMed  Google Scholar 

  • Azhar FM, McNeilly T (1988) The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) Moench seedlings. Plant Breed 101(2):114–121

    Article  CAS  Google Scholar 

  • Basnayake J, Cooper M, Ludlow MM, Henzell RG, Snell PJ (1995) Inheritance of osmotic adjustment to water stress in three grain sorghum crosses. Theor Appl Genet 90(5):675–682

    Article  CAS  PubMed  Google Scholar 

  • Bavei V, Shiran B, Khodambashi M, Ranjbar A (2011a) Protein electrophoretic profiles and physiochemical indicators of salinity tolerance in sorghum (Sorghum bicolor L.). Afr J Biotechnol 10:2683–2697

    Article  CAS  Google Scholar 

  • Bavei V, Shiran B, Ahmad A (2011b) Evaluation of salinity tolerance in sorghum (Sorghum bicolor L.) using ion accumulation, proline and peroxidase criteria. Plant Growth Regul 64:275–285

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential: are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56(11):1159–1168

    Article  Google Scholar 

  • Borrell AK, Hammer GL, Henzell RG (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40(4):1037–1048

    Article  Google Scholar 

  • Burdette A, Garner PL, Mayer EP, Hargrove JL, Hartle DK, Greenspan P (2010) Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. J Med Food 13(4):879–887

    Article  PubMed  Google Scholar 

  • Burow GB, Franks CD, Xin Z (2008) Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of sorghum. Crop Sci 48(1):41–48

    Article  Google Scholar 

  • Burow GB, Franks CD, Acosta-Martinez V, Xin Z (2009) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). Theor Appl Genet 118(3):423–431

    Article  CAS  PubMed  Google Scholar 

  • Burow G, Burke JJ, Xin Z, Franks CD (2011) Genetic dissection of early season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol Breed 28:391–402

    Article  Google Scholar 

  • Chakrabarti M, de Lorenzo L, Abdel-Ghany SE, Reddy AS, Hunt AG (2020) Wide-ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in sorghum. Plant J 102(5):916–930

    Article  CAS  PubMed  Google Scholar 

  • Chiang C, Bånkestad D, Hoch G (2021) Effect of asynchronous light and temperature fluctuations on plant traits in indoor growth facilities. Agronomy 11(4):755

    Article  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262(3):579–588

    Article  CAS  PubMed  Google Scholar 

  • Da Silva LS, Taylor J, Taylor JRN (2011) Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion. J Agric Food Chem 59(17):9265–9270

    Article  PubMed  Google Scholar 

  • Dalal M, Mayandi K, Chinnusamy V (2012) Sorghum: improvement of abiotic stress tolerance. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley, New York, pp 923–950

    Chapter  Google Scholar 

  • de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM (2017) Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr 57(2):372–390

    Article  PubMed  Google Scholar 

  • Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Plant Genomics 12:514–535

    Article  CAS  PubMed  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Article  Google Scholar 

  • Emendack Y, Malinowski D, Burke J, Burow G, Xin Z (2014) Morpho-physiological characterization of cold-and pre-flowering drought tolerance in grain sorghum (Sorghum bicolor L. Moench) inbreds. Am J Exp Agric 4(12):1500

    Google Scholar 

  • FAOSTAT (2019). Production/yield quantities of Sorghum in World (Rome). http://www.fao.org/faostat/en/#data/QC/visualize

  • Feller U (2016) Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J Plant Physiol 203:84–94

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization (2019) Crop information. http://www.fao.org/land-water/databases-and-software/crop-information. Accessed 10 Aug 2020

  • Fracasso A, Trindade LM, Amaducci S (2016) Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol 16(1):1–18

    Article  Google Scholar 

  • Franks CD, Burow GB, Burke JJ (2006) A comparison of U.S. and Chinese sorghum germplasm for early season cold tolerance. Crop Sci 46(3):1371–1376

    Article  Google Scholar 

  • Gerrano MT, Labuschagne A, van Biljon NG, Shargie NM (2016) Quantification of mineral composition and total protein content in sorghum [Sorghum bicolor (L.) Moench] genotypes. Cereal Res Commun 44(2):272–285

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zheng B, Potgieter AB, Diot J, Watanabe K, Noshita K, Jordan DR, Wang X, Watson J, Ninomiya S, Chapman SC (2018) Aerial imagery analysis–quantifying appearance and number of sorghum heads for applications in breeding and agronomy. Front Plant Sci 9:1544

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer G, Chapman S, Singh V, Nguyen C, van Oosterom E, McLean G, Zheng B, Jordan D (2015) Grain sorghum varietal reactions to heat stress and environment. Grain Research and Development Corporation, GRDC Project code: UQ00065

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Alam M, Seneweera S, Rakshit S, Henry RJ (eds) (2021) Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield. CABI, Wallingford

    Google Scholar 

  • Hulugalle NR, Broughton KJ, Tan DK (2015) Fine root production and mortality in irrigated cotton, maize and sorghum sown in vertisols of northern New South Wales, Australia. Soil Tillage Res 146:313–322

    Article  Google Scholar 

  • Jain V, Singla NK, Jain S, Gupta K (2010) Activities of enzymes of fermentation pathways in the leaves and roots of contrasting cultivars of sorghum (Sorghum bicolor L.) during flooding. Physiol Mol Biol Plants 16(3):241–247. https://doi.org/10.1007/s12298-010-0025-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawad Hassan M, Ali Raza M, Ur Rehman S, Ansar M, Gitari H, Khan I et al (2020) Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9(11):1575

    Article  PubMed Central  Google Scholar 

  • Jenks MA, Rich PJ, Rhodes D, Ashworth EN, Axtell JD, Ding CK (2000) Leaf sheath cuticular waxes on bloomless and sparse bloom mutants of Sorghum bicolor. Phytochemistry 54(6):577–584

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics 15(1):1–19

    Article  Google Scholar 

  • Kadam S, Abril A, Dhanapal AP, Koester RP, Vermerris W, Jose S, Fritschi FB (2017) Characterization and regulation of aquaporin genes of sorghum [Sorghum bicolor (L.) Moench] in response to waterlogging stress. Front Plant Sci 8:862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103(2–3):266–276

    Article  CAS  Google Scholar 

  • Khayal AY, Ullah I, Nughman M, Shah SM, Ali N (2019) 82. Elemental, antimicrobial and antioxidant activities of a medicinal plant Sorghum halepense. Pure Appl Biol 8(1):795–803

    Article  Google Scholar 

  • Knoll J, Ejeta G (2008) Marker assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116(4):541–553

    Article  PubMed  Google Scholar 

  • Knoll J, Gunaratna G, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116(4):577–587

    Article  PubMed  Google Scholar 

  • Kulamarva AG, Sosle VR, Raghavan GSV (2009) Nutritional and rheological properties of sorghum. Int J Food Prop 12(1):55–69

    Article  CAS  Google Scholar 

  • Maharajan T, Krishna TP, Kiriyanthan RM, Ignacimuthu S, Ceasar SA (2021) Improving abiotic stress tolerance in sorghum: focus on the nutrient transporters and marker-assisted breeding. Planta 254(5):1–16

    Article  Google Scholar 

  • Marla SR, Burow G, Chopra R, Hayes C, Olatoye MO, Felderhoff T et al (2019) Genetic architecture of chilling tolerance in sorghum dissected with a nested association mapping population. G3 (Bethesda) 9(12):4045–4057

    Article  CAS  Google Scholar 

  • Maulana F, Weerasooriya D, Tesso T (2017) Sorghum landrace collections from cooler regions of the world exhibit magnificent genetic differentiation and early season cold tolerance. Front Plant Sci 8:756

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra D, Kumar S, Mishra BN (2021) An overview of morpho-physiological, biochemical, and molecular responses of sorghum towards heavy metal stress. Rev Environ Contam Toxicol 256:155–177

    PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AR, Tarpley L (2010) Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur J Agron 33(2):117–123

    Article  Google Scholar 

  • Ndlovu E, van Staden J, Maphosa M (2021) Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress 2:100018

    Article  CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811. https://doi.org/10.2135/cropsci2004.8060)

    Article  Google Scholar 

  • Pandian S, Rakkammal K, Rathinapriya P, Rency AS, Satish L, Ramesh M (2020) Physiological and biochemical changes in sorghum under combined heavy metal stress: an adaptive defence against oxidative stress. Biocatal Agric Biotechnol 29:101830

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Patanè C, Saita A, Sortino O (2013) Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. J Agron Crop Sci 199(1):30–37

    Article  Google Scholar 

  • Perrier L, Rouan L, Jaffuel S, Clément-Vidal A, Roques S, Soutiras A, Luquet D (2017) Plasticity of sorghum stem biomass accumulation in response to water deficit: a multiscale analysis from internode tissue to plant level. Front Plant Sci 8:1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad VB, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, Prasad PV (2021) Drought and high temperature stress in sorghum: physiological, genetic, and molecular insights and breeding approaches. Int J Mol Sci 22(18):9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad Vara PV, Djanaguiraman M (2011) High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Funct Plant Biol 38:993–1003

    Article  CAS  Google Scholar 

  • Promkhambut A, Polthanee A, Akkasaeng C, Younger A (2011a) Growth, yield and aerenchyma formation of sweet sorghum (Sorghum bicolor L. Moench) as affected by flooding at different growth stages. Aust J Crop Sci 5:954–965

    Google Scholar 

  • Promkhambut A, Polthanee A, Akkasaeng C, Younger A (2011b) A flood-free period combined with early planting is required to sustain yield of pre-rice sweet sorghum (Sorghum bicolor L. Moench). Acta Agric Scan B 61:345–355

    Google Scholar 

  • Punia H, Tokas J, Malik A, Sangwan S (2021) Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res Commun 49(3):343–353

    Article  CAS  Google Scholar 

  • Radočaj D, Velić N, Jurišić M, Merdić E (2020) The remediation of agricultural land contaminated by heavy metals. Poljoprivreda 26(2):30–42

    Article  Google Scholar 

  • Raza H, Pasha I, Shoaib M, Zaaboul F, Niazi S, Aboshora W (2017) Review on functional and rheological attributes of kafirin for utilization in gluten free baking industry. J Food Sci Nutr Res 4:150–157

    Google Scholar 

  • Reddy PS (2019) Breeding for abiotic stress resistance in sorghum. In: Breeding sorghum for diverse end uses. Woodhead Publishing, Sawston, pp 325–340

    Chapter  Google Scholar 

  • Roy SK, Cho SW, Kwon SJ, Kamal AHM, Kim SW, Oh MW et al (2016) Morpho-physiological and proteome level responses to cadmium stress in sorghum. PLoS One 11(2):e0150431

    Article  PubMed  PubMed Central  Google Scholar 

  • Salih OM, Nour AM, Harper DB (1991) Chemical and nutritional composition of two famine food sources used in Sudan, Mukheit (Boscia senegalensis ) and Maikah (Dobera roxburghi ). J Sci Food Agric 57:367–377

    Article  CAS  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48(5–6):713–726

    Article  CAS  PubMed  Google Scholar 

  • Shabani A, Sepaskhah AR, Kamgar-Haghighi AA (2015) A model to predict the dry matter and yield of rapeseed under salinity and deficit irrigation. Arch Agron Soil Sci 61(4):525–542

    Article  Google Scholar 

  • Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  • Shen S, Huang R, Li C, Wu W, Chen H, Shi J, Ye X (2018) Phenolic compositions and antioxidant activities differ significantly among sorghum grains with different applications. Molecules 23(5):1203

    Article  PubMed Central  Google Scholar 

  • Silva G (2018). Feeding the world in 2050 and beyond-part 1: productivity challenges. Michigan State University Extension–3 December

    Google Scholar 

  • Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169(2):403–412

    Article  CAS  Google Scholar 

  • Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T (2014) Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24

    Article  CAS  PubMed  Google Scholar 

  • Štolfa I, Pfeiffer TŽ, Špoljarić D, Teklić T, Lončarić Z (2015) Heavy metal-induced oxidative stress in plants: response of the antioxidative system. In: Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham, pp 127–163

    Chapter  Google Scholar 

  • Su M, Li X-F, Ma X-Y, Peng XJ, Zhao AG, Cheng LQ, Chen SY, Liu GS (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci 181:652–659

    Article  CAS  PubMed  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101(5–6):733–741

    Article  CAS  Google Scholar 

  • Sui N, Yang Z, Liu M, Wang B (2015) Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics 16(1):1–18

    Article  CAS  Google Scholar 

  • Svensson L, Sekwati-Monang B, Lutz DL, Schieber A, Ganzle MG (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58(16):9214–9220

    Article  CAS  PubMed  Google Scholar 

  • Swami AK, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100(8):1225–1232

    Article  CAS  Google Scholar 

  • Tari I, Laskay G, Takács Z, Poór P (2013) Response of sorghum to abiotic stresses: a review. J Agron Crop Sci 199(4):264–274

    Article  CAS  Google Scholar 

  • Tawfik RS, El-Mouhamady ABA (2019) Molecular genetic studies on abiotic stress resistance in sorghum entries through using half diallel analysis and inter-simple sequence repeat (ISSR) markers. Bull Natl Res Centre 43(1):1–17

    Article  Google Scholar 

  • Tiwari P, Srivastava D, Chauhan AS, Indoliya Y, Singh PK, Tiwari S, Nautiyal CS (2021) Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes. Ecotoxicol Environ Saf 207:111252

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Nikoloski Z (2021) Machine learning approaches for crop improvement: leveraging phenotypic and genotypic big data. J Plant Physiol 257:153354

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra MR, Grote E, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3(6):439–448

    Article  CAS  Google Scholar 

  • Virupaksha TK, Sastry LVS (1968) Protein content and amino acid composition of some varieties of grain sorghum. J Agric Food Chem 16(2):199–203

    Article  CAS  Google Scholar 

  • Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in sorghum. Plant Physiol 110(4):1301–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie T, Su P, Shan L (2010) Photosynthetic characteristics and water use efficiency of sweet sorghum under different watering regimes. Pak J Bot 42(6):3981–3994

    Google Scholar 

  • Xiong Y, Zhang P, Warner RD, Fang Z (2019) Sorghum grain: from genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr Rev Food Sci Food Saf 18(6):2025–2046

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring staygreen in grain sorghum (Sorghum bicolor L. Moench). Genome 43(3):461–469

    Article  CAS  PubMed  Google Scholar 

  • Yada S, Payal M, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. Sustainable crop production

    Google Scholar 

  • Yan K, Chen P, Shao H, Zhao S, Zhang L, Xu G, Yun S (2012) Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. J Agron Crop Sci 198:218–226

    Article  CAS  Google Scholar 

  • Yang Z, Van Oosterom EJ, Jordan DR, Hammer GL (2009) Pre-anthesis ovary development determines genotypic differences in potential kernel weight in sorghum. J Exp Bot 60(4):1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Li JL, Liu LN, Xie Q, Sui N (2020) Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front Plant Sci 10:1722

    Article  PubMed  PubMed Central  Google Scholar 

  • Yigit N, Sevik H, Cetin M, Kaya N (2016) Determination of the effect of drought stress on the seed germination in some plant species. In: Water stress in plants. IntechOpen, London, p 43

    Google Scholar 

  • Yuping L, Hongbin L, Yuanyuan L, Suiqi Z (2017) Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J 5(3):231–239

    Article  Google Scholar 

  • Zegada-Lizarazu W, Fernando Luna D, Monti A (2016) Differential characteristics of photochemical acclimation to cold in two contrasting sweet sorghum hybrids. Physiol Plant 157(4):479–489

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

All the authors contributed equally and declared that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamal, A., Ahmad, F. (2022). Sorghum: Role and Responses Under Abiotic Stress. In: Abdel Latef, A.A.H. (eds) Sustainable Remedies for Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-5121-3_5

Download citation

Publish with us

Policies and ethics