Skip to main content

The Role of the Root Microbiome in the Utilization of Functional Traits for Increasing Plant Productivity

  • Chapter
  • First Online:
Plant Microbiome for Plant Productivity and Sustainable Agriculture

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 37))

  • 688 Accesses

Abstract

It is now clear that the root microbiome, which consists of bacteria, archaea, and fungi that colonize both the rhizosphere and the internal space of the root, is one of the most complex ecosystems in nature and is very important for root and plant health and function.

In this chapter we have focused on the role of the root microbiome functional traits in improvement of nutrient acquisition and abiotic stress tolerance, with a focus on drought stress, the biocontrol of root and shoot plant diseases, and the role of root-associated microbes in both producing plant growth-promoting hormones and impacting the plant hormone metabolism and signaling pathways to alter root growth. Additionally, we have also endeavored to give the readers an introduction into the rapid advances in this field, from the metagenomic analyses that now have become relatively routine for the study of “what is there” in the root microbiome, regarding microbial composition, diversity, and abundance, to nascent studies beginning to study the plant and microbial molecular and physiological mechanisms and processes that underlie how the microbiome is assembled, and how the microbiome confers improved functional crop traits. Furthermore, given the incredible complexity of this ecosystem, we discuss the recent research involving systems biology analysis of the root microbiome, which will be critical in deciphering the trait–function links and interactions between roots and soil microbes. Finally, we also discuss the agricultural and genetic interventions that are being employed to modify the root microbiome via inoculation of the seed and plant with potentially beneficial soil microbes, as well as the studies looking at the role of plant genetic and molecular variation in impacting the composition and function of the microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarons S, Abbas A, Adams C, Fenton A, O’Gara F (2000) A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182(14):3913–3919

    Article  CAS  Google Scholar 

  • Adams D, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci 76(1):170–174

    Article  CAS  Google Scholar 

  • Akgül D, Mirik M (2008) Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. J Plant Pathol 90:29–34

    Google Scholar 

  • Antoun H (2013) Plant-growth-promoting rhizobacteria. Brenner’s encyclopedia of genetics, vol 5, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272(1):201–209

    Article  CAS  Google Scholar 

  • Arzanesh MH, Alikhani H, Khavazi K, Rahimian H, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27(2):197–205

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores: a study with 7-nitrobenz-2 oxa-1, 3-diazole-desferrioxamine as fluorescent ferrioxamine B analog. Plant Physiol 99(4):1329–1335

    Article  CAS  Google Scholar 

  • Beijerinck M (1901) Uber oligonitrophile mikroben. Zentralbl Bakterol Parasitenkd Infektionskr Hyg Abt II 7:561–582

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  Google Scholar 

  • Boyd E, Anbar A, Miller S, Hamilton T, Lavin M, Peters J (2011) A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology 9(3):221–232

    Article  CAS  Google Scholar 

  • Bressan M, Roncato M-A, Bellvert F, Comte G, el Zahar Haichar F, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3(11):1243–1257

    Article  CAS  Google Scholar 

  • Bulen W, LeComte J (1966) The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proc Natl Acad Sci U S A 56(3):979

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    Article  CAS  Google Scholar 

  • Burén S, Jiang X, López-Torrejón G, Echavarri-Erasun C, Rubio LM (2017) Purification and in vitro activity of mitochondria targeted nitrogenase cofactor maturase NifB. Front Plant Sci 8:1567

    Article  Google Scholar 

  • Bürgmann H, Widmer F, Von Sigler W, Zeyer J (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70(1):240–247

    Article  Google Scholar 

  • Cacciari I, Lippi D, Pietrosanti T, Pietrosanti W (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil 115(1):151–153

    Article  CAS  Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47(5):495–506

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46(3):186–195

    Article  CAS  Google Scholar 

  • Chen J, Lausser A, Dresselhaus T (2014) Hormonal responses during early embryogenesis in maize. Portland Press, London

    Book  Google Scholar 

  • Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7(1):1–14

    Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke JI, O’Gara F, Dowling DN (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiology 2(5):717–724

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157(3):503–523

    Article  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075

    Article  CAS  Google Scholar 

  • Coelho MR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, O’Donnell AG (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42(1):48–53

    Article  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21(1):1–18

    Article  Google Scholar 

  • Cotton TA, Pétriacq P, Cameron DD, Al Meselmani M, Schwarzenbacher R, Rolfe SA, Ton J (2019) Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J 13(7):1647–1658

    Article  CAS  Google Scholar 

  • Crits-Christoph A, Diamond S, Butterfield CN, Thomas BC, Banfield JF (2018) Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558(7710):440–444

    Article  CAS  Google Scholar 

  • Crowley DE, Reid CP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87(3):680–685

    Article  CAS  Google Scholar 

  • Daetwyler HD, Hayden MJ, Spangenberg GC, Hayes BJ (2015) Selection on optimal haploid value increases genetic gain and preserves more genetic diversity relative to genomic selection. Genetics 200(4):1341–1348

    Article  Google Scholar 

  • Daryanto S, Wang L, Jacinthe P-A (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11(5):e0156362

    Article  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores. Springer-Verlag, Berlin, pp 1–42

    Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359(6373):320–325

    Article  CAS  Google Scholar 

  • Denholm I, Cahill M, Dennehy T, Horowitz A (1998) Challenges with managing insecticide resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci. Philos Trans R Soc Lond B Biol Sci 353(1376):1757–1767

    Article  CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32(1):227–243

    Article  Google Scholar 

  • Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One 8(3):e58640

    Article  CAS  Google Scholar 

  • Duca DR, Rose DR, Glick BR (2018) Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 111(9):1645–1660

    Article  CAS  Google Scholar 

  • Dunlap CA, Bowman MJ, Schisler DA (2013) Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of Fusarium head blight. Biol Control 64(2):166–175

    Article  CAS  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112(8):E911–E920

    Article  CAS  Google Scholar 

  • el Zahar Haichar F, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2(12):1221–1230

    Article  Google Scholar 

  • Fabiańska I, Gerlach N, Almario J, Bucher M (2019) Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. New Phytol 221(4):2123–2137

    Article  Google Scholar 

  • Foster R (1986) The ultrastructure of the rhizoplane and rhizosphere. Annu Rev Phytopathol 24(1):211–234

    Article  Google Scholar 

  • Fox AR, Soto G, Valverde C, Russo D, Lagares A Jr, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534

    Article  CAS  Google Scholar 

  • Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Plant Biol 3(4):128–145

    Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Article  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39(1):103–110

    Article  Google Scholar 

  • Giri B, Prasad R, Varma A (2018) Root biology. Springer International Publishing. ISBN 978-3-319-75910-4. https://www.springer.com/us/book/9783319759098

    Book  Google Scholar 

  • Girish N, Umesha S (2005) Effect of plant growth promoting rhizobacteria on bacterial canker of tomato. Arch Phytopathol Plant Protect 38(3):235–243

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  Google Scholar 

  • Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L (2021) PGPR mediated alterations in root traits: way toward sustainable crop production. Front Sustain Food Syst 4:287

    Article  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104(3):815

    Article  CAS  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245–258

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  Google Scholar 

  • Hammons RO (1976) Peanuts: genetic vulnerability and breeding strategy 1. Crop Sci 16(4):527–530

    Article  Google Scholar 

  • Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, Kopriva S, Voges MJ, Sattely ES, Garrido-Oter R (2020) Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28(6):825–837.e826

    Article  CAS  Google Scholar 

  • Hartman K, Tringe SG (2019) Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem J 476(19):2705–2724

    Article  CAS  Google Scholar 

  • Hassan HM, Troxell B (2013) Transcriptional regulation by ferric uptake regulator (FUR) in pathogenic bacteria. Front Cell Infect Microbiol 3:59

    Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact 14(12):1351–1363

    Article  CAS  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen uber die Stickstoffnahrung der Gramineen und Leguminosen. Buchdruckerei der "Post" Kayssler, Berlin

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237(2):173–195

    Article  CAS  Google Scholar 

  • Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell RJ (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165(2):464–474

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549

    Article  CAS  Google Scholar 

  • Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MG (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9(1):1–13

    Article  Google Scholar 

  • Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364(6440):eaau6389

    Article  CAS  Google Scholar 

  • Jackson M (1991) Ethylene in root growth and development. In: Matoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, FL

    Google Scholar 

  • Jacobson C, Pasternak J, Glick B (1994) Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40(1):19–1025

    Google Scholar 

  • Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19(3):250–256

    Article  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7(6):331–338

    Article  CAS  Google Scholar 

  • Ke J, Wang B, Yoshikuni Y (2021) Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol 39(3):244–261

    Article  CAS  Google Scholar 

  • Khan N, Bano A, Babar M (2017) The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis 72(3):195–205

    Article  CAS  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33(2):389–397

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776):885–886

    Article  CAS  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz'mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    Article  CAS  Google Scholar 

  • Lee KJ, Kamala-Kannan S, Sub HS, Seong CK, Lee GW (2008) Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol 24(7):1139–1145

    Article  CAS  Google Scholar 

  • Leveau JH, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 65(2):238–250

    Article  CAS  Google Scholar 

  • Leveau JH, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71(5):2365–2371

    Article  CAS  Google Scholar 

  • Li M, Wang J, Yao T, Wang Z, Zhang H, Li C (2021) Isolation and characterization of cold-adapted PGPB and their effect on plant growth promotion. J Microbiol Biotechnol 31(9):1218–1230

    Article  CAS  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  Google Scholar 

  • Lucas JA, Hawkins NJ, Fraaije BA (2015) The evolution of fungicide resistance. Adv Appl Microbiol 90:29–92

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    Article  CAS  Google Scholar 

  • Macintosh KA, Doody DG, Withers PJ, McDowell RW, Smith DR, Johnson LT, Bruulsema TW, O’Flaherty V, McGrath JW (2019) Transforming soil phosphorus fertility management strategies to support the delivery of multiple ecosystem services from agricultural systems. Sci Total Environ 649:90–98

    Article  CAS  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7(10):e48479

    Article  CAS  Google Scholar 

  • Marschner H (1995) Adaptation of plants to adverse chemical soil conditions. In: Mineral nutrition of higher plants. Academic, New York

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • McCasland M, Trautmann NM, Wagenet RJ (1985) Nitrate: health effects in drinking water. Cornell Cooperative Extension, Ithaca, NY

    Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  Google Scholar 

  • Miransari M (2014) Plant growth promoting rhizobacteria. J Plant Nutr 37(14):2227–2235

    Article  CAS  Google Scholar 

  • Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45

    Article  Google Scholar 

  • Nambiar P, Sivaramakrishnan S (1987) Detection and assay of siderophores in cowpea rhizobia (Bradyrhizobium) using radioactive Fe (59Fe). Lett Appl Microbiol 4(2):37–40

    Article  CAS  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    Article  Google Scholar 

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    Article  Google Scholar 

  • Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11(12):2691–2704

    Article  Google Scholar 

  • Neilands JB (1984) Methodology of siderophores. In: Siderophores from microorganisms and plants. structure and bonding, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111309

    Chapter  Google Scholar 

  • Novoa R, Loomis R (1981) Nitrogen and plant production. Plant Soil 58(1):177–204

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002a) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48(7):635–642

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002b) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    Article  CAS  Google Scholar 

  • Pierson LS, Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136(2):101–108

    Article  CAS  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9(6):263–266

    Article  CAS  Google Scholar 

  • Prasad R, Zhang S-H (2022) Benefical microorganisms in agriculture. Springer, Singapore. https://link.springer.com/book/9789811907326

    Book  Google Scholar 

  • Razaq M, Zhang P, Shen H-l (2017) Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12(2):e0171321

    Article  Google Scholar 

  • Roberts TL, Johnston AE (2015) Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl 105:275–281

    Article  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111. https://doi.org/10.1146/annurev.micro.62.081307.162737

    Article  CAS  Google Scholar 

  • Ryu M-H, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané J-M (2020) Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 5(2):314–330

    Article  CAS  Google Scholar 

  • Sang MK, Chun S-C, Kim KD (2008) Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol Control 46(3):424–433

    Article  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73

    Article  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111(2):585–592

    Article  CAS  Google Scholar 

  • Scott JC, Greenhut IV, Leveau JH (2013) Functional characterization of the bacterial iac genes for degradation of the plant hormone indole-3-acetic acid. J Chem Ecol 39(7):942–951

    Article  CAS  Google Scholar 

  • Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E (2017) Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods 14(11):1063–1071

    Article  CAS  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  Google Scholar 

  • Shakir MA, Asghari B, Muhammad A (2012) Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31(1):108–112

    CAS  Google Scholar 

  • Sharma A, Johri B, Sharma A, Glick B (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894

    Article  CAS  Google Scholar 

  • Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Plant microbe symbiosis: fundamentals and advances. Springer, New York, pp 147–167

    Chapter  Google Scholar 

  • Shulse CN, Chovatia M, Agosto C, Wang G, Hamilton M, Deutsch S, Yoshikuni Y, Blow MJ (2019) Engineered root bacteria release plant-available phosphate from phytate. Appl Environ Microbiol 85(18):e01210–e01219

    Article  CAS  Google Scholar 

  • Skoog F, Armstrong DJ (1970) Cytokinins. Ann Rev Plant Physiol 21(1):359–384

    Article  CAS  Google Scholar 

  • Smarrelli J Jr, Castignetti D (1986) Iron acquisition by plants: the reduction of ferrisiderophores by higher plant NADH: nitrate reductase. Biochim Biophys Acta 882(3):337–342

    Article  CAS  Google Scholar 

  • Soko T, Bender CM, Prins R, Pretorius ZA (2018) Yield loss associated with different levels of stem rust resistance in bread wheat. Plant Dis 102(12):2531–2538

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  Google Scholar 

  • Takeuchi T, Sawada H, Tanaka F, Matsuda I (1996) Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int J Syst Evol Microbiol 46(2):476–479

    CAS  Google Scholar 

  • Tan S, Yang C, Mei X, Shen S, Raza W, Shen Q, Xu Y (2013) The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Appl Soil Ecol 64:15–22

    Article  Google Scholar 

  • Thimann KV (1939) Auxins and the inhibition of plant growth. Biol Rev 14(3):314–337

    Article  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31(13):1847–1852

    Article  CAS  Google Scholar 

  • Tirnaz S, Batley J (2019) DNA methylation: toward crop disease resistance improvement. Trends Plant Sci 24(12):1137–1150

    Article  CAS  Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbial community. Mol Micro Ecol Rhizosp 1:1099–1103

    Article  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Article  CAS  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14(6):1223–1233

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  Google Scholar 

  • Wang Y, Brown H, Crowley D, Szaniszlo P (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16(5):579–585

    Article  CAS  Google Scholar 

  • Wang J, Zhang Y, Jin J, Li Q, Zhao C, Nan W, Wang X, Ma R, Bi Y (2018) An intact cytokinin-signaling pathway is required for Bacillus sp. LZR216-promoted plant growth and root system architecture altereation in Arabidopsis thaliana seedlings. Plant Growth Regul 84(3):507–518

    Article  CAS  Google Scholar 

  • Wang P, Chai YN, Roston R, Dayan FE, Schachtman DP (2021) The Sorghum bicolor root exudate Sorgoleone shapes bacterial communities and delays network formation. mSystems 6(2):e00749-20

    Article  Google Scholar 

  • Weiß M, Waller F, Zuccaro A, Selosse MA (2016) Sebacinales–one thousand and one interactions with land plants. New Phytol 211(1):20–40

    Article  Google Scholar 

  • Weng J, Wang Y, Li J, Shen Q, Zhang R (2013) Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl Microbiol Biotechnol 97(19):8823–8830

    Article  CAS  Google Scholar 

  • Wille L, Messmer MM, Studer B, Hohmann P (2019) Insights to plant–microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ 42(1):20–40

    Article  CAS  Google Scholar 

  • Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, Kim Y-M, Zink EM, Engbrecht KM, Wang Y (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci 115(18):E4284–E4293

    Article  CAS  Google Scholar 

  • Xu L, Pierroz G, Wipf HM-L, Gao C, Taylor JW, Lemaux PG, Coleman-Derr D (2021) Holo-omics for deciphering plant-microbiome interactions. Microbiome 9(1):1–11

    Article  CAS  Google Scholar 

  • Yadav A, Singh RP, Singh AL, Singh M (2021) Identification of genes involved in phosphate solubilization and drought stress tolerance in chickpea symbiont Mesorhizobium ciceri Ca181. Arch Microbiol 203(3):1167–1174

    Article  CAS  Google Scholar 

  • Yang J, Xie X, Xiang N, Tian Z-X, Dixon R, Wang Y-P (2018) Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc Natl Acad Sci 115(36):E8509–E8517

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–1102

    Article  CAS  Google Scholar 

  • Zahir Z, Munir A, Asghar H, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  Google Scholar 

  • Zhang Z, Pierson LS (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67(9):4305–4315

    Article  CAS  Google Scholar 

  • Zipper SC, Qiu J, Kucharik CJ (2016) Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environ Res Lett 11(9):094021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Chandnani or Leon V. Kochian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandnani, R., Kochian, L.V. (2023). The Role of the Root Microbiome in the Utilization of Functional Traits for Increasing Plant Productivity. In: Chhabra, S., Prasad, R., Maddela, N.R., Tuteja, N. (eds) Plant Microbiome for Plant Productivity and Sustainable Agriculture . Microorganisms for Sustainability, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-19-5029-2_3

Download citation

Publish with us

Policies and ethics