Skip to main content

Introduction to Bast Fibers

  • Chapter
  • First Online:
Bast Fibers and Their Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 225 Accesses

Abstract

Natural fiber-based composites have made significant progress in recent decades due to their environmental friendliness, lightweight, and low cost. While there are numerous sources of natural fibers, this chapter focuses on bast fibers because they possess desirable characteristics for a variety of applications. These fibers are derived from the phloem that surrounds the stems of fibrous plants, primarily dicotyledonous. Bast fibers’ qualities are regulated by environmental conditions, maturity, extraction method, and processing. This chapter discusses various aspects of different types of bast fibers, their physical, chemical, and mechanical properties, and their applications in a variety of fields, intending to promote their use in advanced technology sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rajeshkumar G (2021) Cellulose fiber from date palm petioles as potential reinforcement for polymer composites.: Physicochem Struct Prop 1–11. https://doi.org/10.1002/pc.26106

  2. Rajeshkumar G (2021) Mechanical and free vibration properties of Phoenix sp. fiber reinforced epoxy composites: Influence of sodium bicarbonate treatment. Polym Compos 42:6362–6369. https://doi.org/10.1002/pc.26303

    Article  CAS  Google Scholar 

  3. Iyyadurai J, Gandhi VCS, Suyambulingam I, Rajeshkumar G (2021) Sustainable development of cissus quadrangularis stem fiber/epoxy composite on abrasive wear rate. J Nat Fibers 00:1–13. https://doi.org/10.1080/15440478.2021.1982819

    Article  CAS  Google Scholar 

  4. RaviKumar P, Rajeshkumar G, Prakash Maran J et al (2021) Evaluation of mechanical and water absorption behaviors of jute/carbon fiber reinforced polyester hybrid composites. J Nat Fibers 00:1–13. https://doi.org/10.1080/15440478.2021.1924339

    Article  CAS  Google Scholar 

  5. Sumesh KR, Kavimani V, Rajeshkumar G et al (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycles Waste Manag 23:1277–1288. https://doi.org/10.1007/s10163-021-01196-6

    Article  CAS  Google Scholar 

  6. Rajeshkumar G, Devnani GL, Maran JP et al (2021) Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose 28:5373–5385. https://doi.org/10.1007/s10570-021-03919-2

    Article  CAS  Google Scholar 

  7. Ramakrishnan S, Krishnamurthy K, Rajasekar R, Rajeshkumar G (2019) An experimental study on the effect of nano-clay addition on mechanical and water absorption behaviour of jute fibre reinforced epoxy composites. J Ind Text 49:597–620. https://doi.org/10.1177/1528083718792915

    Article  CAS  Google Scholar 

  8. Ramakrishnan S, Krishnamurthy K, Rajeshkumar G, Asim M (2021) Dynamic mechanical properties and free vibration characteristics of surface modified jute fiber/nano-clay reinforced epoxy composites. J Polym Environ 29:1076–1088. https://doi.org/10.1007/s10924-020-01945-y

    Article  CAS  Google Scholar 

  9. Fiore V, Di Bella G, Valenza A (2015) The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos Part B Eng 68:14–21. https://doi.org/10.1016/j.compositesb.2014.08.025

    Article  CAS  Google Scholar 

  10. Aziz SH, Ansell MP, Clarke SJ, Panteny SR (2005) Modified polyester resins for natural fibre composites. Compos Sci Technol 65:525–535. https://doi.org/10.1016/j.compscitech.2004.08.005

    Article  CAS  Google Scholar 

  11. Lim ZY, Putra A, Nor MJM, Yaakob MY (2018) Sound absorption performance of natural kenaf fibres. Appl Acoust 130:107–114. https://doi.org/10.1016/j.apacoust.2017.09.012

    Article  Google Scholar 

  12. Romanzini D, Junior HLO, Amico SC, Zattera AJ (2012) Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites. Mater Res 15:415–420. https://doi.org/10.1590/S1516-14392012005000050

    Article  CAS  Google Scholar 

  13. Goda K, Sreekala MS, Gomes A et al (2006) Improvement of plant based natural fibers for toughening green composites-effect of load application during mercerization of ramie fibers. Compos Part A Appl Sci Manuf 37:2213–2220. https://doi.org/10.1016/j.compositesa.2005.12.014

    Article  CAS  Google Scholar 

  14. Monteiro SN, Milanezi TL, Louro LHL et al (2016) Novel ballistic ramie fabric composite competing with KevlarTM fabric in multilayered armor. Mater Des 96:263–269. https://doi.org/10.1016/j.matdes.2016.02.024

    Article  CAS  Google Scholar 

  15. Fonseca CS, Silva MF, Mendes RF et al (2019) Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites. Constr Build Mater 211:517–527. https://doi.org/10.1016/j.conbuildmat.2019.03.236

    Article  CAS  Google Scholar 

  16. Khan JA, Khan MA (2015) The use of jute fibers as reinforcements in composites

    Google Scholar 

  17. Aly-Hassan MS (2015) A new perspective in multifunctional composite materials. Elsevier Inc.

    Google Scholar 

  18. Crini G, Lichtfouse E, Chanet G, Morin-Crini N (2020) Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review. Environ Chem Lett 18:1451–1476. https://doi.org/10.1007/s10311-020-01029-2

    Article  CAS  Google Scholar 

  19. Duque Schumacher AG, Pequito S, Pazour J (2020) Industrial hemp fiber: A sustainable and economical alternative to cotton. J Clean Prod 268:122180. https://doi.org/10.1016/j.jclepro.2020.122180

    Article  Google Scholar 

  20. Parvez AM, Lewis JD, Afzal MT (2021) Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: status, challenges and outlook. Renew Sustain Energy Rev 141:110784. https://doi.org/10.1016/j.rser.2021.110784

  21. Neves ACC, Rohen LA, Mantovani DP et al (2020) Comparative mechanical properties between biocomposites of Epoxy and polyester matrices reinforced by hemp fiber. J Mater Res Technol 9:1296–1304. https://doi.org/10.1016/j.jmrt.2019.11.056

    Article  CAS  Google Scholar 

  22. Dash C, Bisoyi DK (2020) A study on the structure-property relationship of microwave irradiated Sunn Hemp fiber reinforced polymer composite. IOP Conf Ser: Mater Sci Eng 798:012015.https://doi.org/10.1088/1757-899X/798/1/012015

  23. Krishnan T, Jayabal S, Krishna VN (2018) Tensile, flexural, impact, and hardness properties of alkaline-treated Sunnhemp fiber reinforced polyester composites. J Nat Fibers 00:1–11. https://doi.org/10.1080/15440478.2018.1492488

    Article  CAS  Google Scholar 

  24. Debnath S (2017) Sustainable production of bast fibres. Elsevier Ltd

    Google Scholar 

  25. Sengupta S, Debnath S (2018) Development of sunnhemp (Crotalaria juncea) fibre based unconventional fabric. Ind Crops Prod 116:109–115. https://doi.org/10.1016/j.indcrop.2018.02.059

    Article  CAS  Google Scholar 

  26. Nadlene R, Sapuan SM, Jawaid M et al (2016) A review on roselle fiber and its composites. J Nat Fibers 13:10–41. https://doi.org/10.1080/15440478.2014.984052

    Article  Google Scholar 

  27. Crane JC (1949) Roselle—a potentially important plant fiber. Econ Bot 3:89–103. https://doi.org/10.1007/BF02859509

    Article  CAS  Google Scholar 

  28. Razali N, Salit MS, Jawaid M et al (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: effect of fibre maturity. BioResources 10:1803–1823. https://doi.org/10.15376/biores.10.1.1803-1824

  29. Ilyas RA, Asyraf MRM, Sapuan SM, Afiq TMN, Suhrisman A, Atikah MSN, Ibrahim R (2021) Development of roselle fiber-reinforced polymer biocomposite mug pad using the hybrid design for sustainability and pugh method. In: Sapuan SM, Nadlene R, Radzi AM, Ilyas RA (ed) Roselle production, processing, products and biocomposites. Academic, pp 197–213

    Google Scholar 

  30. Njoku CE, Omotoyinbo JA, Alaneme KK, Daramola MO (2020) Structural characterization and mechanical behaviour of sodium hydroxide-treated urena lobata fiber reinforced polypropylene matrix composites. Fibers Polym 21:2983–2992. https://doi.org/10.1007/s12221-020-1289-3

    Article  CAS  Google Scholar 

  31. Njoku CE, Omotoyinbo JA, Alaneme KK, Daramola MO (2019) Chemical modification of urena lobata (Caeser weed) fibers for reinforcement applications. J Phys Conf Ser 1378:022015. https://doi.org/10.1088/1742-6596/1378/2/022015

  32. Njoku CE, Omotoyinbo JA, Alaneme KK, Daramola MO (2020) Characterization of urena lobata fibers after alkaline treatment for use in polymer composites. J Nat Fibers 00:1–12. https://doi.org/10.1080/15440478.2020.1745127

    Article  CAS  Google Scholar 

  33. Costa UO, Nascimento LFC, Garcia JM et al (2020) Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. J Mater Res Technol 9:373–382. https://doi.org/10.1016/j.jmrt.2019.10.066

    Article  CAS  Google Scholar 

  34. Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites - a review. Compos Part B Eng 56:296–317. https://doi.org/10.1016/j.compositesb.2013.08.014

    Article  CAS  Google Scholar 

  35. Morrison WH, Archibald DD, Sharma HSS, Akin DE (2000) Chemical and physical characterization of water- and dew-retted flax fibers. Ind Crops Prod 12:39–46. https://doi.org/10.1016/S0926-6690(99)00044-8

    Article  CAS  Google Scholar 

  36. Yang J, Wen C, Duan Y et al (2021) The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: a review. Trends Food Sci Technol 118:252–260. https://doi.org/10.1016/j.tifs.2021.09.025

    Article  CAS  Google Scholar 

  37. Harwood J, Edom G (2012) Nettle fibre: its prospects, uses and problems in historical perspective. Text Hist 43:107–119. https://doi.org/10.1179/174329512X13284471321244

    Article  Google Scholar 

  38. Balzarini J, Neyts J, Schols D et al (1992) The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication. Antiviral Res 18:191–207. https://doi.org/10.1016/0166-3542(92)90038-7

    Article  CAS  Google Scholar 

  39. Wagner H, Willer F, Kreher B (1989) Biologically active compounds from the aqueous extract of Urtica dioica. Planta Med 55:452–454. https://doi.org/10.1055/s-2006-962062

    Article  CAS  Google Scholar 

  40. Srivastava N, Rastogi D (2018) Nettle fiber: Himalayan wonder with extraordinary textile properties. Int J Home Sci 4:281–285

    Google Scholar 

  41. Jeannin T, Yung L, Evon P et al (2019) Are nettle fibers produced on metal-contaminated lands suitable for composite applications? Mater Today Proc 31:S291–S295. https://doi.org/10.1016/j.matpr.2020.01.365

    Article  CAS  Google Scholar 

  42. Vigneswaran C, Pavithra V, Gayathri V, Mythili K (2015) Banana fiber: scope and value added product development. J Text Appar Technol Manag 9:1–7

    Google Scholar 

  43. Komal UK, Lila MK, Singh I (2020) PLA/banana fiber based sustainable biocomposites: a manufacturing perspective. Compos Part B Eng 180:107535. https://doi.org/10.1016/j.compositesb.2019.107535

    Article  CAS  Google Scholar 

  44. RodrĂ­guez LJ, Fabbri S, Orrego CE, Owsianiak M (2020) Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber. J Environ Manag 266:110493. https://doi.org/10.1016/j.jenvman.2020.110493

    Article  CAS  Google Scholar 

  45. Dittenber DB, Gangarao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  46. Mudoi MP, Sinha S, Parthasarthy V (2021) Polymer composite material with nettle fiber reinforcement: a review. Bioresour Technol Reports 16:100860. https://doi.org/10.1016/j.biteb.2021.100860

    Article  CAS  Google Scholar 

  47. Bismarck, A., Mishra, S. and Lampke T (2005) Plant fibers as reinforcement for green composites. In: Natural fibers. biopolymers and biocomposites

    Google Scholar 

  48. Rajeshkumar G, Seshadri SA, Ramakrishnan S et al (2021) A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: materials and technologies. Polym Compos 42:3687–3701. https://doi.org/10.1002/pc.26110

    Article  CAS  Google Scholar 

  49. Jena PK, Mohanty JR, Nayak S et al (2020) Utilization of chemically modified novel urena lobata fibers as reinforcement in polymer composites–an experimental study. J Nat Fibers 00:1–11. https://doi.org/10.1080/15440478.2020.1818352

    Article  CAS  Google Scholar 

  50. Senwitz C, Kempe A, Neinhuis C et al (2016) Almost forgotten resources - Biomechanical properties of traditionally used bast fibers from northern Angola. BioResources 11:7595–7607. https://doi.org/10.15376/biores.11.3.7595-7607

  51. Chaudhary SN, Borkar SP, Mantha SS (2010) Sunnhemp fiber-reinforced waste polyethylene bag composites. J Reinf Plast Compos 29:2241–2252. https://doi.org/10.1177/0731684409345615

    Article  CAS  Google Scholar 

  52. Vanishree S, Mahale G, Babalad HB (2019) Extraction of sunnhemp fibre and its properties. Indian J Fibre Text Res 44:188–192

    CAS  Google Scholar 

  53. Ramaswamy GN, Sellers T, Tao W, Crook LG (2003) Kenaf nonwovens as substrates for laminations. Ind Crops Prod 17:1–8. https://doi.org/10.1016/S0926-6690(02)00040-7

    Article  CAS  Google Scholar 

  54. Romanzini D, Lavoratti A, Ornaghi HL et al (2013) Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater Des 47:9–15. https://doi.org/10.1016/j.matdes.2012.12.029

    Article  CAS  Google Scholar 

  55. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. Jom 58:80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  56. Furtado SCR, AraĂşjo AL, Silva A et al (2014) Natural fibre-reinforced composite parts for automotive applications. Int J Automot Compos 1:18. https://doi.org/10.1504/ijautoc.2014.064112

    Article  Google Scholar 

  57. Mwasiagi JI, Yu CW, Phologolo T et al (2014) Characterization of the Kenyan Hibiscus. Fibres Text East Eur 3:31–34

    Google Scholar 

  58. Saleem MH, Ali S, Hussain S et al (2020) Flax (Linum usitatissimum L.): a potential candidatfor phytoremediation? biological and economical points of view. Plants 9. https://doi.org/10.3390/plants9040496

  59. Huang G (2005) Nettle (Urtica cannabina L) fibre, properties and spinning practice. J Text Inst 96:11–15. https://doi.org/10.1533/joti.2004.0023

    Article  CAS  Google Scholar 

  60. Courchene CE, Peter GF, Litvay J (2006) Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood Fiber Sci 38:112–120

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajeshkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajeshkumar, G., Raj, T.V., Ashik, A.S., Sooraj, R.L., Aravindh, S. (2022). Introduction to Bast Fibers. In: Rajeshkumar, G., Devnani, G., Sinha, S., Sanjay, M., Siengchin, S. (eds) Bast Fibers and Their Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4866-4_1

Download citation

Publish with us

Policies and ethics