Skip to main content
Log in

A Review on the Mercerization of Natural Fibers: Parameters and Effects

  • Review Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Natural fibers are environmentally friendly materials incorporated into polymer matrices as reinforcement agents. Several fibers are available in nature, such as cotton, jute, sisal, bamboo, hemp, banana, coir, and flax. However, in some cases, poor compatibility between fiber/polymer is observed, limiting their utilization. To overcome this disadvantage, chemical treatments can be applied to the fibers to alter their chemical composition, surface morphology, and mechanical properties. In comparison with other methods, mercerization is a popular methodology largely used to modify the properties of fibers once is inexpensive and does not require toxic chemicals. The main modifications caused by mercerization regarding chemical composition are the removal of wax, oils, and impurities of the surface of the fibers, besides a decrease in lignin and hemicellulose contents, and an increase in cellulose content. Fiber surface morphology becomes cleaner, and mechanical parameters, such as tensile strength and rigidity, are generally improved. Although these are some common modifications, mercerization process parameters must be well-adjusted to obtain optimized results. Unlike other published articles, this review covers the mercerization parameters adopted for several types of natural fibers to establish a correlation between the main effects of the process on the physical–chemical, morphological, and mechanical properties of the fibers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Adapted from Benniger [22]

Fig. 2

Source: Jaramillo-Quiceno et al. [82]

Fig. 3

Source: Mwaikambo & Ansell [96]

Fig. 4

Source: Thakur & Singha [102]

Similar content being viewed by others

References

  1. International Organization for Standardization (ISO 2012). TR 11827:2012. Textiles - Composition testing - Identification of fibers

  2. W.E. Morton, J.W.S. Hearle, Physical properties of textile fibres (Woodhead Publishing, London, 2008), p.68

    Google Scholar 

  3. D.P. Ferreira, J. Cruz, R. Fangueiro, Surface modification of natural fibers in polymer composites (Elsevier Ltd, Amsterdam, 2019)

    Google Scholar 

  4. S. Shahinur, M. Hasan, Natural fiber and synthetic fiber composites: comparison of properties performance cost and environmental benefits (Elsevier, Amsterdam, 2019)

    Google Scholar 

  5. A.K. Mohanty, M. Misra, L.T. Drzal, Compos. Interfaces 8, 313 (2001)

    CAS  ADS  Google Scholar 

  6. M. Pritchard, R.W. Sarsby, S.C. Anand, Textiles in civil engineering Part 2—natural fibre geotextiles (Woodhead Publishing Ltd, Sawston, 2000)

    Google Scholar 

  7. E.M. Fernandes, J.F. Mano, R.L. Reis, Compos. Struct. 105, 153 (2013)

    Google Scholar 

  8. S. Kalia, B.S. Kaith, I. Kaur, Polym. Eng. Sci. 1, 1253 (2009)

    Google Scholar 

  9. D. Saravanan, T. Ramachandran, Asian Dye 4, 35 (2007)

    CAS  Google Scholar 

  10. O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain, Prog. Polym. Sci. 37, 1552 (2012)

    CAS  Google Scholar 

  11. K.J.V. Vardhini, R. Murugan, C.T. Selvi, R. Surjit, Indian J. Fibre Text. Res. 41, 156 (2016)

    CAS  Google Scholar 

  12. A.B.M. Gandini, Natural fibre surface modification and characterization. In: Thomas S, Pothan L, eds. Old City Publishing, Inc. 14–46 (2009)

  13. W.D. Schindler, P.J. Hauser, Chemical finishing of textiles (CRC Press, New York, 2004)

    Google Scholar 

  14. X. Li, L.G. Tabil, S. Panigrahi, J. Polym. Environ. 15, 25 (2007)

    Google Scholar 

  15. J.A. Rippon, D.J. Evans, Improving the properties of natural fibres by chemical treatments (Elsevier, London, 2020)

    Google Scholar 

  16. R.H. Peters, Mercerisation of cotton, in textile chemistry impurities in fibres purification of fibres (Elsevier, London, 1967), p.328

    Google Scholar 

  17. F.J. Kolpak, M. Weih, J. Blackwell, Mercerization of cellulose: determination of the structure of mercerized cotton. Polymer 19, 123 (1978)

    CAS  Google Scholar 

  18. Y.E. El Mogahzy, Finishing processes for fibrous assemblies in textile product design. In engineering textiles, vol. 300 (Elsevier, Amsterdam, 2009)

    Google Scholar 

  19. M.T.B. Pimenta, A.J.F. Carvalho, F. Vilaseca, J. Girones, J.P. López, P. Mutjé, A.A.S. Curvelo, J. Polym. Environ. 16, 35 (2008)

    CAS  Google Scholar 

  20. A. Jähn, M.W. Schröder, M. Füting, K. Schenzel, W. Diepenbrock, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58, 2271 (2002)

    ADS  Google Scholar 

  21. S.R. Karmakar, Chemical Technology in the pre-treatment processes of textiles. In textile science and technology (Elsevier, Amsterdam, 1999)

    Google Scholar 

  22. A.G. Benninger, Mercerization solutions. Resource Management for Textile Finishing (CSD Engineers, Switzerland, 2015)

  23. M.R.M. Asyraf, M. Rafidah, A. Azrina, M.R. Razman, Cellulose 28, 2675 (2021)

    CAS  Google Scholar 

  24. M.Y. Khalid, R. Imran, Z.U. Arif, N. Akram, H. Arshad, A. Al Rashid, F.P. Garcia Marquez, Coatings 11, 1 (2021)

    Google Scholar 

  25. A. Raju, M. Shanmugaraja, I.O.P. Conf, Ser. Mater. Sci. Eng. 988, 012025 (2020)

    CAS  Google Scholar 

  26. S. Kalia, K. Thakur, A. Celli, M.A. Kiechel, C.L. Schauer, J. Environ. Chem. Eng. 1, 97 (2013)

    CAS  Google Scholar 

  27. R.M. Neves, H.L. Ornaghi, A.J. Zattera, S.C. Amico, Carbohydr. Polym. 255, 117366 (2021)

    CAS  PubMed  Google Scholar 

  28. C.A. Adeyanju, S. Ogunniyi, J.O. Ighalo, A.G. Adeniyi, S.A. Abdulkareem, J. Mater. Sci. 56, 2797 (2021)

    CAS  ADS  Google Scholar 

  29. V.K. Balla, K.H. Kate, J. Satyavolu, P. Singh, J.G.D. Tadimeti, Compos. Part B Eng. 174, 106956 (2019)

    CAS  Google Scholar 

  30. V. Lakshmi Narayana, L. Bhaskara Rao, Mater Today Proc. 44, 1988 (2021)

    CAS  Google Scholar 

  31. I. Shah, L. Jing, Z.M. Fei, Y.S. Yuan, M.U. Farooq, N. Kanjana, J. Nat. Fibers 19(13), 5133 (2022)

    CAS  Google Scholar 

  32. S.S. Kamath, D.N. Punith, S. Preetham, S.N. Gautham, Janardhan, K.L. Yashwanth, B. Bennehalli, Tensile and Flexural Behaviour of Areca Husk Fibre Reinforced Epoxy Composite. In: Advances in Metrology and Measurement of Engineering Surfaces, 35 (2021). https://doi.org/10.1007/978-981-15-5151-2_4

  33. S.S. Kumar, V.M. Raja, Compos. Sci. Technol. 208, 108695 (2021)

    CAS  Google Scholar 

  34. F. Sarasini, V. Fiore, J. Clean. Prod. 195, 240 (2018)

    CAS  Google Scholar 

  35. T. Wakida, M. Lee, S.J. Park, A. Hayashi, Transaction 58, 304 (2002)

    CAS  Google Scholar 

  36. I. Gailey, J. Soc. Dye. Colour. 67, 357 (1951)

    CAS  Google Scholar 

  37. J.T. Kim, A.N. Netravali, Compos. Part A Appl. Sci. Manuf. 41, 1245 (2010)

    Google Scholar 

  38. H.P. Stout, Handbook of fiber chemistry, vol. 1056 (CRC/Taylor Francis, Boca Raton, 2006)

    Google Scholar 

  39. Y. Li, Y. Mai, L. Ye, Compos. Sci. Technol. 60, 2037 (2000)

    CAS  Google Scholar 

  40. M.L. Sánchez, W. Patiño, J. Cárdenas, J. Build. Eng. 28, 101058 (2020)

    Google Scholar 

  41. R. Marzouki, A. Brahmia, S. Bondock, S.M.A.S. Keshk, M.F. Zid, A.G. Al-Sehemi, A. Koschella, T. Heinze, Carbohydr. Polym. 221, 29 (2019)

    CAS  PubMed  Google Scholar 

  42. P.J. Jandas, S. Mohanty, S.K. Nayak, J. Clean. Prod. 52, 392 (2013)

    CAS  Google Scholar 

  43. A. Roy, S. Chakraborty, S.P. Kundu, R.K. Basak, S. Basu Majumder, B. Adhikari, Bioresour. Technol. 107, 222 (2012)

    CAS  PubMed  Google Scholar 

  44. P.J. Jandas, S. Mohanty, S.K. Nayak, H. Srivastava, Polym. Compos. 32(11), 1689 (2011)

    CAS  Google Scholar 

  45. P. Saha, S. Manna, S.R. Chowdhury, R. Sen, D. Roy, B. Adhikari, Bioresour. Technol. 101, 3182 (2010)

    CAS  PubMed  Google Scholar 

  46. H. Gu, Mater. Des. 30, 3931 (2009)

    CAS  Google Scholar 

  47. Jannah M, Mariatti M, Abu bakar A, Abdul khalil HPS (2009) J Reinf Plast Compos, 28, 1519

  48. M.M.E. Costa, S.L.S. Melo, J. Victor, M. Santos, E.A. Araújo, G.P. Cunha, E.P. Deus, N. Schmitt, Procedia Eng. 200, 457 (2017)

    CAS  Google Scholar 

  49. T. Haghighatnia, A. Abbasian, J. Morshedian, Ind. Crop Prod. 108, 853 (2017)

    CAS  Google Scholar 

  50. M.F. Rosa, B. Chiou, E.S. Medeiros, D.F. Wood, T.G. Williams, L.H.C. Mattoso, W.J. Orts, S.H. Imam, Bioresour. Technol. 100, 5196 (2009)

    CAS  PubMed  Google Scholar 

  51. J. Gassan, A.K. Bledzki, Compos. Sci. Technol. 59, 1303 (1999)

    CAS  Google Scholar 

  52. N. Sameii, S.M. Mortazavi, A.S. Rashidi, S. Sheikhzadah-Najar, J. Appl. Sci. 8, 4204 (2008)

    CAS  ADS  Google Scholar 

  53. J. Vincent, J. Phillip, A. Barbara, Swelling of cotton with sodium hysroxide. Handbook of cotton fiber chemistry and technology (Taylor and Francis group, Boca Raton, 2006), p.83

    Google Scholar 

  54. F.R. Jones, Handbook of polymer-fiber composites, New York (1994)

  55. D. Grosser, W. Liese, Wood Sci. Technol. 5, 290 (1971)

    Google Scholar 

  56. W. Peng, Q. Xue, M. Ohkoshi, Pak. J. Pharm. Sci. 27, 991 (2014)

    CAS  PubMed  Google Scholar 

  57. M. Das, D. Chakrabarty, BioResources 3, 1051 (2008)

    Google Scholar 

  58. M.Y. Hashim, M.N. Roslan, A.M. Amin, A. Mujahid, A. Zaidi, World Acad. Sci. Eng. Technol. 6, 1638 (2012)

    Google Scholar 

  59. A.R. Moghassem, P. Valipour, Fibers Polym. 14, 330 (2013)

    CAS  Google Scholar 

  60. B. Xiong, P. Zhao, K. Hu, L. Zhang, G. Cheng, Cellulose 21, 1183 (2014)

    CAS  Google Scholar 

  61. S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, S. Parija, Compos. Sci. Technol. 63, 1377 (2003)

    CAS  Google Scholar 

  62. T.H.D. Sydenstricker, S. Mochnaz, S.C. Amico, Polym. Test. 22, 375 (2003)

    CAS  Google Scholar 

  63. S.H. Aziz, M.P. Ansell, Compos. Sci. Technol. 64, 1219 (2004)

    CAS  Google Scholar 

  64. M. Das, D. Chakraborty, J. Appl. Polym. Sci. 102, 5050 (2006)

    CAS  Google Scholar 

  65. Y. Liu, H. Hu, Fibers Polym. 9, 735 (2008)

    CAS  Google Scholar 

  66. V. Kaur, C. Dp, S. Kaur, S.K. Godara, S. Sharma, S. Kaur, S. Garg, J. Text. Sci. Eng. 9, 1 (2019)

    Google Scholar 

  67. M. Ho, H. Wang, J. Lee, C. Ho, K. Lau, J. Leng, D. Hui, Compos. Part B. 43, 3549 (2012)

    CAS  Google Scholar 

  68. R.M. Kozłowski, Handbook of natural fibres processing and applications (Woodhead Publishing Limited in association with The Textile Institute, Philadelphia, 2012), p.2

    Google Scholar 

  69. N. Chand, Natural fibers and their composites. Tribology of natural fiber polymer composites (Woodhead publishing, Sawston, 2008), p.1

    Google Scholar 

  70. J.L. Thomason, J.L. Rudeiros-Fernández, Compos. Part A Appl. Sci. Manuf. 147, 106478 (2021)

    CAS  Google Scholar 

  71. H.L. Bos, M.J. Van Den Oever, O.C. Peters, J. Mater. Sci. 37, 1683 (2002)

    CAS  ADS  Google Scholar 

  72. W. Ouarhim, N. Zari, R. Bouhfid and A.E.K. Qaiss, Fibre-reinforced compos. Hybrid Compos., Mechanical performance of natural fibers–based thermosetting composites. In: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 43 (2019). https://doi.org/10.1016/B978-0-08-102292-4.00003-5

  73. F. Ahmad, H.S. Choi, M.K. Park, Macromol. Mater. Eng. 300(1), 10 (2015)

    CAS  Google Scholar 

  74. J. Mussig, Industrial applications of natural fibres structure. Properties and technical applications (Wiley, Hoboken, 2010)

    Google Scholar 

  75. D. Ray, B.K. Sarkar, J. Appl. Polym. Sci. 80, 1013 (2001)

    CAS  Google Scholar 

  76. D. Ray, B.K. Sarkar, A.K. Rana, N.R. Bose, Compos. Part A. 32, 119 (2001)

    CAS  Google Scholar 

  77. X. Colom, F. Carrillo, Eur. Polym. J. 38, 2225 (2002)

    CAS  Google Scholar 

  78. S.K. Ramamoorthy, Properties and performance of regenerated cellulose thermoset biocomposites. Thesis for the Degree of Doctor of Philosophy Properties. University of Boras, Sweden, (2015)

  79. F.Z. Arrakhiz, M. El Achaby, A.C. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfid, O. Fassi-fehri, A. Qaiss, Mater. Des. 37, 379 (2012)

    CAS  Google Scholar 

  80. S.K. Batra, Handbook of fibre chemistry (EUA, New York, 1998)

    Google Scholar 

  81. L.T. Fook, J.M. Yatim, Int. J. Res. Eng. Technol. 4(8), 2319 (2015)

    Google Scholar 

  82. N. Jaramillo-Quiceno, R.J.M. Vélez, E.M. Cadena Ch, A. Restrepo-Osorio, J.F. Santa, Fibers Polym. 19, 2604 (2018)

    CAS  Google Scholar 

  83. F.R.W. Sloan, Rev. Prog. Color. Relat. Top. 5(1), 12 (1974)

    CAS  Google Scholar 

  84. G.W. Beckermann, K.L. Pickering, Compos. Part A. 39, 979 (2008)

    Google Scholar 

  85. A. Bartos, J. Anggono, Á.E. Farkas, D. Kun, F.E. Soetaredjo, J. Móczó, H. Purwaningsih, B. Pukánszky, Polym. Test. 88, 106549 (2020)

    CAS  Google Scholar 

  86. S.K. Ramamoorthy, M. Skrifvars, A. Persson, Polym. Rev. 55, 107 (2015)

    CAS  Google Scholar 

  87. B.A. Amel, M.T. Paridah, R. Sudin, U.M.K. Anwar, A.S. Hussein, Ind. Crop Prod. 46, 117 (2013)

    CAS  Google Scholar 

  88. L. Savoye, Reduction de l’impact environnemental du blanchiment au peroxyde d’hydrogene en milieu alcalin des pates mécaniques (Université de Grenoble, France, 2011)

    Google Scholar 

  89. M. Malha, Polymere Thermoplastique Renforce Par Des Fibres De Doum. (2013)

  90. M.J. John, R.D. Anandjiwala, Polym. Compos. 29, 187 (2008)

    CAS  Google Scholar 

  91. M. Ali, M.N. Islam, A.J. Mian, A.S. Chowdhury, J. Text. Inst. 92, 34 (2001)

    CAS  Google Scholar 

  92. A.E. Ofomaja, E.B. Naidoo, Chem. Eng. J. 175, 260 (2011)

    CAS  Google Scholar 

  93. M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Appl. Surf. Sci. 276, 13 (2013)

    CAS  ADS  Google Scholar 

  94. K.L. Pickering, M.G.A. Efendy, T.M. Le, Compos. Part A. 83, 98 (2016)

    CAS  Google Scholar 

  95. G. Buschle-Diller, S.H. Zeronian, Text. Chem. Color. 26, 17 (1994)

    CAS  Google Scholar 

  96. L.Y. Mwaikambo, M.P. Ansell, J. Appl. Polym. Sci. 84, 2222 (2002)

    CAS  Google Scholar 

  97. E. Farazandehmehr, A. Khoddami, M. Dinari, Int. J. Biol. Macromol. 170, 561 (2021)

    CAS  PubMed  Google Scholar 

  98. A. Choudhury, Acid—alkali finish, principles of textile finishing (Woodhead publishing, Sawston, 2017)

    Google Scholar 

  99. V.R. Botaro, G. Siqueira, J.D.M. Jr, E. Frollini, (2010) J. Appl. Polym. Sci., 115, 269

  100. M. Kostic, B. Pejic, P. Skundric, Bioresour. Technol. 99, 94 (2008)

    CAS  PubMed  Google Scholar 

  101. R. Narendar, K. Priya Dasan, Compos. Part B Eng. 56, 770 (2014)

    CAS  Google Scholar 

  102. V.K. Thakur, A.S. Singha, Surface modification of biopolymers (Wiley, Hoboken, 2015)

    Google Scholar 

  103. P.A. Sreekumar, S.P. Thomas, J. marc Saiter, K. Joseph, G. Unnikrishnan, S. Thomas, Compos. Part A Appl. Sci. Manuf. 40, 1777 (2009)

    Google Scholar 

  104. Y. Cao, S. Shibata, I. Fukumoto, Compos. Part A. 37, 423 (2006)

    Google Scholar 

  105. S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, F.O. Hassani, A. Laachachi, A. El Bouari, Case Studies in Therm. Eng. 10, 550 (2017)

    Google Scholar 

  106. M. Le Troëdec, A. Rachini, C. Peyratout, S. Rossignol, E. Max, O. Kaftan, A. Fery, A. Smith, J. Colloid Interface Sci. 356, 303 (2011)

    PubMed  ADS  Google Scholar 

  107. S. Ochi, Mech. Mater. 40, 446 (2008)

    Google Scholar 

  108. J. Rout, S.S. Tripathy, S.K.N.M. Misra, A.K. Mohanty, J. Appl. Polym. Sci. 79, 1169 (2001)

    CAS  Google Scholar 

  109. A.R. Neto, M.A. Araujo, R.M. Barboza, A.S. Fonseca, G.H. Tonoli, F.V. Souza, L.H. Mattoso, J.M. Marconcini, Ind. Crops Prod. 43, 529 (2013)

    Google Scholar 

  110. N. Mokaloba, R. Batane, Int. J. Eng. Sci. Technol. 6, 83 (2016)

    Google Scholar 

  111. I. Jordanov, B. Mangovska, P.F. Tavčer, Tekstil 59, 439 (2010)

    CAS  Google Scholar 

  112. G.F.S. Hussain, K.R.K. Iyer, N.B. Patil, Text. Res. Inst. 52, 663 (1982)

    CAS  Google Scholar 

  113. A. Duval, A. Bourmaud, L. Augier, C. Baley, Mater. Lett. 65, 797 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), especially the Ph.D. scholarship (Process number 169328/2018-0), and other foment agencies of Brazil, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), especially the “Internacionalização” Project (Process number 19/2551-0000708-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Leites Luchese.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchese, C.L., Engel, J.B. & Tessaro, I.C. A Review on the Mercerization of Natural Fibers: Parameters and Effects. Korean J. Chem. Eng. 41, 571–587 (2024). https://doi.org/10.1007/s11814-024-00112-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00112-6

Keywords

Navigation