Skip to main content

Nuclear Matter Under Extreme External Fields

  • Chapter
  • First Online:
Properties of QCD Matter at High Baryon Density

Abstract

Recently, there have been rapidly growing interests in understanding the phase structures and transport properties of matter under extreme fields like electromagnetic fields and global rotation [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miransky VA, Shovkovy IA (2015) Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals. Phys Rept 576:1–209. arXiv:1503.00732

  2. Fukushima K (2019) Extreme matter in electromagnetic fields and rotation. Prog Part Nucl Phys 107:167–199. arXiv:1812.08886

  3. Adamczyk L et al (2017) Global \(\Lambda \) hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548:62–65. arXiv:1701.06657

  4. Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S (2017) Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down. Phys Rev C 95(5):054902. arXiv:1610.02506

  5. Csernai LP, Magas VK, Wang DJ (2013) Flow vorticity in peripheral high energy heavy ion collisions. Phys Rev C 87(3):034906 arXiv:1302.5310

    Article  Google Scholar 

  6. Becattini F, Inghirami G, Rolando V, Beraudo A, Del Zanna L, De Pace A, Nardi M, Pagliara G, Chandra V (2015) A study of vorticity formation in high energy nuclear collisions. Eur Phys J C 75(9):406. arXiv:1501.04468. [Erratum: Eur Phys J C 78:354 (2018)]

  7. Jiang Y, Lin Z-W, Liao J (2016) Rotating quark-gluon plasma in relativistic heavy ion collisions. Phys Rev C 94(4):044910. arXiv:1602.06580. [Erratum: Phys Rev C 95:049904 (2017)]

  8. Shi S, Li K, Liao J (2019) Searching for the subatomic swirls in the CuCu and CuAu collisions. Phys Lett B 788:409–413. arXiv:1712.00878

  9. Deng W-T, Huang X-G (2016) Vorticity in heavy-ion collisions. Phys Rev C 93(6):064907. arXiv:1603.06117

  10. Pang L-G, Petersen H, Wang Q, Wang X-N (2016) Vortical fluid and \(\Lambda \) spin correlations in high-energy heavy-ion collisions. Phys Rev Lett 117(19):192301. arXiv:1605.04024

  11. Xia X-L, Li H, Tang Z-B, Wang Q (2018) Probing vorticity structure in heavy-ion collisions by local \(\Lambda \) polarization. Phys Rev C 98:024905. arXiv:1803.00867

  12. Watts AL et al (2016) Colloquium: measuring the neutron star equation of state using x-ray timing. Rev Mod Phys 88(2):021001. arXiv:1602.01081

  13. Grenier IA, Harding AK (2015) Gamma-ray pulsars: a gold mine. Comptes Rendus Physique 16:641–660. arXiv:1509.08823

  14. Yamamoto A, Hirono Y (2013) Lattice QCD in rotating frames. Phys Rev Lett 111:081601 arXiv:1303.6292

    Article  Google Scholar 

  15. Fetter Alexander L (2009) Rotating trapped Bose-Einstein condensates. Rev Mod Phys 81:647–691

    Article  Google Scholar 

  16. Michael U, Peter S (2008) Pair breaking in rotating Fermi gases. Phys Rev A 78(1):011601 arXiv:0804.0355

    Article  Google Scholar 

  17. Iskin M, Tiesinga E (2009) Rotation-induced superfluid-normal phase separation in trapped Fermi gases. Phys Rev A 79(5):053621 arXiv:0811.3010

    Article  Google Scholar 

  18. Takahashi R, Matsuo M, Ono M, Harii K, Chudo H, Okayasu S, Ieda J, Takahashi S, Maekawa S, Saitoh E (2016) Spin hydrodynamic generation. Nat Phys 12(1):52–56

    Article  Google Scholar 

  19. Gooth J et al (2017) Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP. Nature 547:324–327. arXiv:1703.10682

  20. Takahashi R, Chudo H, Matsuo M, Harii K, Ohnuma Y, Maekawa S, Saitoh E (2020) Giant spin hydrodynamic generation in laminar flow. Nat Commun 11:3009

    Article  Google Scholar 

  21. Skokov V, Illarionov AY, Toneev V (2009) Estimate of the magnetic field strength in heavy-ion collisions. Int J Mod Phys A 24:5925–5932 arXiv:0907.1396

    Article  Google Scholar 

  22. Deng W-T, Huang X-G (2012) Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys Rev C 85:044907 arXiv:1201.5108

    Article  Google Scholar 

  23. Yuji H, Masaru H, Tetsufumi H (2014) Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions. Phys Rev C 90(2):021903 arXiv:1211.1114

    Article  Google Scholar 

  24. Deng W-T, Huang X-G (2015) Electric fields and chiral magnetic effect in Cu+Au collisions. Phys Lett B 742:296–302 arXiv:1411.2733

    Article  Google Scholar 

  25. Wei D-X, Deng W-T, Huang X-G (2019) Thermal vorticity and spin polarization in heavy-ion collisions. Phys Rev C 99(1):014905. arXiv:1810.00151

  26. Becattini F, Karpenko I (2018) Collective longitudinal polarization in relativistic heavy-ion collisions at very high energy. Phys Rev Lett 120(1):012302. arXiv:1707.07984

  27. Olausen SA, Kaspi VM (2014) The McGill magnetar catalog. Astrophys J Suppl 212:6 arXiv:1309.4167

    Article  Google Scholar 

  28. Turolla R, Zane S, Watts A (2015) Magnetars: the physics behind observations. A review. Rept Prog Phys 78(11):116901. arXiv:1507.02924

  29. Voronyuk V, Toneev VD, Cassing W, Bratkovskaya EL, Konchakovski VP, Voloshin SA (2011) (Electro-)Magnetic field evolution in relativistic heavy-ion collisions. Phys Rev C 83:054911 arXiv:1103.4239

    Article  Google Scholar 

  30. Bloczynski J, Huang X-G, Zhang X, Liao J (2013) Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions. Phys Lett B 718:1529–1535 arXiv:1209.6594

    Article  Google Scholar 

  31. Siddique I, Sheng X-L, Wang Q (2021) Space-average electromagnetic fields and electromagnetic anomaly weighted by energy density in heavy-ion collisions. Phys Rev C 104(3):034907. arXiv:2106.00478

  32. Bloczynski J, Huang X-G, Zhang X, Liao J (2015) Charge-dependent azimuthal correlations from AuAu to UU collisions. Nucl Phys A 939:85–100 arXiv:1311.5451

    Article  Google Scholar 

  33. Umut G, Dmitri K, Krishna R (2014) Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys Rev C 89(5):054905 arXiv:1401.3805

    Article  Google Scholar 

  34. Gürsoy U, Kharzeev D, Marcus E, Rajagopal K, Shen C (2018) Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions. Phys Rev C 98(5):055201. arXiv:1806.05288

  35. Inghirami G, Del Zanna L, Beraudo A, Moghaddam MH, Becattini F, Bleicher M (2016) Numerical magneto-hydrodynamics for relativistic nuclear collisions. Eur Phys J C 76(12):659. arXiv:1609.03042

  36. Yan L, Huang X-G (2021) Dynamical evolution of magnetic field in the pre-equilibrium quark-gluon plasma. 4. arXiv:2104.00831

  37. Becattini F, Chandra V, Del Zanna L, Grossi E (2013) Relativistic distribution function for particles with spin at local thermodynamical equilibrium. Annals Phys 338:32–49 arXiv:1303.3431

    Article  MathSciNet  MATH  Google Scholar 

  38. Fang R-H, Pang L-G, Wang Q, Wang X-N (2016) Polarization of massive fermions in a vortical fluid. Phys Rev C 94(2):024904. arXiv:1604.04036

  39. Liu Y-C, Mameda K, Huang X-G (2020) Covariant spin kinetic theory I: collisionless limit. Chin Phys C 44(9):094101. arXiv:2002.03753

  40. Deng X-G, Huang X-G, Ma Y-G, Zhang S (2020) Vorticity in low-energy heavy-ion collisions. Phys Rev C 101(6):064908. arXiv:2001.01371

  41. Oleg T, Rahim U (2015) Vorticity and hydrodynamic helicity in heavy-ion collisions in the hadron-string dynamics model. Phys Rev C 92(1):014906

    Article  Google Scholar 

  42. Xie YL, Bleicher M, Stöcker H, Wang DJ, Csernai LP (2016) \(\Lambda \) polarization in peripheral collisions at moderate relativistic energies. Phys Rev C 94(5):054907. arXiv:1610.08678

  43. Fu B, Xu K, Huang X-G, Song H (2021) Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions. Phys Rev C 103(2):024903. arXiv:2011.03740

  44. Li H, Pang L-G, Wang Q, Xia X-L (2017) Global \(\Lambda \) polarization in heavy-ion collisions from a transport model. Phys Rev C 96(5):054908. arXiv:1704.01507

  45. Yamamoto A (2021) Overview of external electromagnetism and rotation in lattice QCD. Eur Phys J A 57(6):211. arXiv:2103.00237

  46. Shovkovy IA (2013) Magnetic catalysis: a review. Lect Notes Phys 871:13–49 arXiv:1207.5081

    Article  Google Scholar 

  47. D’Elia M (2013) Lattice QCD simulations in external background fields. Lect Notes Phys 871:181–208 arXiv:1209.0374

    Article  Google Scholar 

  48. Andersen JO, Naylor WR, Tranberg A (2016) Phase diagram of QCD in a magnetic field: a review. Rev Mod Phys 88:025001 arXiv:1411.7176

    Article  Google Scholar 

  49. Gusynin VP, Miransky VA, Shovkovy IA (1995) Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)-dimensions. Phys Lett B 349:477–483 arXiv:hep-ph/9412257

    Article  Google Scholar 

  50. Gusynin VP, Miransky VA, Shovkovy IA (1994) Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions. Phys Rev Lett 73:3499–3502. arXiv:hep-ph/9405262. [Erratum: Phys Rev Lett 76:1005 (1996)]

  51. Gusynin VP, Miransky VA, Shovkovy IA (1996) Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl Phys B 462:249–290 arXiv:hep-ph/9509320

    Article  Google Scholar 

  52. D’Elia M, Mukherjee S, Sanfilippo F (2010) QCD phase transition in a strong magnetic background. Phys Rev D 82:051501. arXiv:1005.5365

  53. Bali GS, Bruckmann F, Endrodi G, Fodor Z, Katz SD, Krieg S, Schafer A, Szabo KK (2012) The QCD phase diagram for external magnetic fields. JHEP 02:044 arXiv:1111.4956

    Article  MATH  Google Scholar 

  54. Bali GS, Bruckmann F, Endrodi G, Fodor Z, Katz SD, Schafer A (2012) QCD quark condensate in external magnetic fields. Phys Rev D 86:071502 arXiv:1206.4205

    Article  MATH  Google Scholar 

  55. Mueller N, Pawlowski JM (2015) Magnetic catalysis and inverse magnetic catalysis in QCD. Phys Rev D 91(11):116010. arXiv:1502.08011

  56. Kenji F, Yoshimasa H (2013) Magnetic catalysis versus magnetic inhibition. Phys Rev Lett 110(3):031601 arXiv:1209.1319

    Article  Google Scholar 

  57. Lang Yu, Hao L, Mei H (2014) Spontaneous generation of local CP violation and inverse magnetic catalysis. Phys Rev D 90(7):074009 arXiv:1404.6969

    Article  Google Scholar 

  58. Farias RLS, Gomes KP, Krein GI, Pinto MB (2014) Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter. Phys Rev C 90(2):025203 arXiv:1404.3931

    Article  Google Scholar 

  59. Ayala A, Loewe M, Mizher AJ, Zamora R (2014) Inverse magnetic catalysis for the chiral transition induced by thermo-magnetic effects on the coupling constant. Phys Rev D 90(3):036001. arXiv:1406.3885

  60. Ding HT, Li ST, Tomiya A, Wang XD, Zhang Y (2021) Chiral properties of (2+1)-flavor QCD in strong magnetic fields at zero temperature. Phys Rev D 104(1):014505. arXiv:2008.00493

  61. Ding HT, Li ST, Shi Q, Wang XD (2021) Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field. Eur Phys J A 57(6):202. arXiv:2104.06843

  62. Bali GS, Endrődi G, Piemonte S (2020) Magnetic susceptibility of QCD matter and its decomposition from the lattice. JHEP 07:183. arXiv:2004.08778

  63. Ding HT, Li ST, Shi Q, Tomiya A, Wang XD, Zhang Y (2021) QCD phase structure in strong magnetic fields. Acta Phys Polon Supp 14:403. arXiv:2011.04870

  64. Sun F, Huang A (2021) The properties of strange quark matter under strong rotation. 4. arXiv:2104.14382

  65. Braguta VV, Kotov AY, Kuznedelev DD, Roenko AA (2021) Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics. Phys Rev D 103(9):094515. arXiv:2102.05084

  66. Jiang Y, Liao J (2016) Pairing phase transitions of matter under rotation. Phys Rev Lett 117(19):192302. arXiv:1606.03808

  67. Ebihara S, Fukushima K, Mameda K (2017) Boundary effects and gapped dispersion in rotating fermionic matter. Phys Lett B 764:94–99. arXiv:1608.00336

  68. Chen H-L, Fukushima K, Huang X-G, Mameda K (2016) Analogy between rotation and density for Dirac fermions in a magnetic field. Phys Rev D 93(10):104052. arXiv:1512.08974

  69. Mameda K, Yamamoto A (2016) Magnetism and rotation in relativistic field theory. PTEP 2016(9):093B05. arXiv:1504.05826

  70. Huang X-G, Nishimura K, Yamamoto N (2018) Anomalous effects of dense matter under rotation. JHEP 02:069. arXiv:1711.02190

  71. Liu Y, Zahed I (2018) Pion condensation by rotation in a magnetic field. Phys Rev Lett 120(3):032001. arXiv:1711.08354

  72. Liu Y, Zahed I (2018) Rotating Dirac fermions in a magnetic field in 1+2 and 1+3 dimensions. Phys Rev D 98(1):014017. arXiv:1710.02895

  73. Chernodub MN, Gongyo S (2017) Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics. JHEP 01:136. arXiv:1611.02598

  74. Chernodub MN, Gongyo S (2017) Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions. Phys Rev D 95(9):096006. arXiv:1702.08266

  75. Chernodub MN, Gongyo S (2017) Edge states and thermodynamics of rotating relativistic fermions under magnetic field. Phys Rev D 96(9):096014. arXiv:1706.08448

  76. Zubkov MA (2018) Hall effect in the presence of rotation. EPL 121(4):47001. arXiv:1801.05368

  77. Wang X, Wei M, Li Z, Huang M (2019) Quark matter under rotation in the NJL model with vector interaction. Phys Rev D 99(1):016018. arXiv:1808.01931

  78. Wang L, Jiang Y, He L, Zhuang P (2019) Local suppression and enhancement of the pairing condensate under rotation. Phys Rev C 100(3):034902. arXiv:1901.00804

  79. Wang L, Jiang Y, He L, Zhuang P (2019) Chiral vortices and pseudoscalar condensation due to rotation. Phys Rev D 100(11):114009. arXiv:1901.04697

  80. Zhang H, Hou D, Liao J (2020) Mesonic condensation in isospin matter under rotation. Chin Phys C 44(11):111001. arXiv:1812.11787

  81. Lian-yi H, Meng J, Peng-fei Z (2005) Pion superfluidity and meson properties at finite isospin density. Phys Rev D 71:116001 arXiv:hep-ph/0503272

    Article  Google Scholar 

  82. Kharzeev DE, McLerran LD, Warringa HJ (2008) The Effects of topological charge change in heavy ion collisions: event by event P and CP violation. Nucl Phys A 803:227–253 arXiv:0711.0950

  83. Fukushima K, Kharzeev DE, Warringa HJ (2008) The chiral magnetic effect. Phys Rev D 78:074033 arXiv:0808.3382

    Article  Google Scholar 

  84. Son DT, Zhitnitsky AR (2004) Quantum anomalies in dense matter. Phys Rev D 70:074018. arXiv:hep-ph/0405216

  85. Erdmenger J, Haack M, Kaminski M, Yarom A (2009) Fluid dynamics of R-charged black holes. JHEP 01:055 arXiv:0809.2488

    Article  MathSciNet  MATH  Google Scholar 

  86. Banerjee N, Bhattacharya J, Bhattacharyya S, Dutta S, Loganayagam R, Surowka P (2011) Hydrodynamics from charged black branes. JHEP 01:094. arXiv:0809.2596

  87. Son DT, Surowka P (2009) Hydrodynamics with triangle anomalies. Phys Rev Lett 103:191601 arXiv:0906.5044

    Article  MathSciNet  Google Scholar 

  88. Xu-Guang H, Jinfeng L (2013) Axial current generation from electric field: chiral electric separation effect. Phys Rev Lett 110(23):232302 arXiv:1303.7192

    Article  Google Scholar 

  89. Yin J, Xu-Guang H, Jinfeng L (2015) Chiral electric separation effect in the quark-gluon plasma. Phys Rev D 91(4):045001 arXiv:1409.6395

    Article  Google Scholar 

  90. Kharzeev DE, Yee H-U (2011) Chiral magnetic wave. Phys Rev D 83:085007 arXiv:1012.6026

    Article  Google Scholar 

  91. Jiang Y, Huang X-G, Liao J (2015) Chiral vortical wave and induced flavor charge transport in a rotating quark-gluon plasma. Phys Rev D 92(7):071501. arXiv:1504.03201

  92. Abelev BI et al (2009) Azimuthal charged-particle correlations and possible local strong parity violation. Phys Rev Lett 103:251601 arXiv:0909.1739

    Article  Google Scholar 

  93. Adamczyk L et al (2014) Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC. Phys Rev Lett 113:052302 arXiv:1404.1433

    Article  Google Scholar 

  94. Adamczyk L et al (2015) Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys Rev Lett 114(25):252302. arXiv:1504.02175

  95. Landsteiner K, Megias E, Pena-Benitez F (2011) Gravitational anomaly and transport. Phys Rev Lett 107:021601 arXiv:1103.5006

    Article  MATH  Google Scholar 

  96. Golkar S, Son DT (2015) (Non)-renormalization of the chiral vortical effect coefficient. JHEP 02:169 arXiv:1207.5806

    Article  MathSciNet  MATH  Google Scholar 

  97. Glorioso P, Liu H, Rajagopal S (2019) Global anomalies, discrete symmetries, and hydrodynamic effective actions. JHEP 01:043. arXiv:1710.03768

  98. Son DT, Yamamoto N (2013) Kinetic theory with Berry curvature from quantum field theories. Phys Rev D 87(8):085016 arXiv:1210.8158

  99. Stephanov MA, Yin Y (2012) Chiral kinetic theory. Phys Rev Lett 109:162001 arXiv:1207.0747

    Article  Google Scholar 

  100. Carignano S, Manuel C, Torres-Rincon JM (2020) Chiral kinetic theory from the on-shell effective field theory: Derivation of collision terms. Phys Rev D 102(1):016003. arXiv:1908.00561

  101. Mueller N, Venugopalan R (2017) Worldline construction of a covariant chiral kinetic theory. Phys Rev D 96(1):016023. arXiv:1702.01233

  102. Mueller N, Venugopalan R (2018) The chiral anomaly, Berry’s phase and chiral kinetic theory, from world-lines in quantum field theory. Phys Rev D 97(5):051901. arXiv:1701.03331

  103. Mueller N, Tarasov A, Venugopalan R (2020) Deeply inelastic scattering structure functions on a hybrid quantum computer. Phys Rev D 102(1):016007. arXiv:1908.07051

  104. Jing-Yuan C, Son Dam T, Stephanov Mikhail A, Ho-Ung Y, Yi Y (2014) Lorentz invariance in chiral kinetic theory. Phys Rev Lett 113(18):182302 arXiv:1404.5963

    Article  Google Scholar 

  105. Chen J-Y, Son DT, Stephanov MA (2015) Collisions in chiral kinetic theory. Phys Rev Lett 115(2):021601. arXiv:1502.06966

  106. Liu SYF, Yin Y (2021) Spin polarization induced by the hydrodynamic gradients. JHEP 07:188. arXiv:2103.09200

  107. Liu SYF, Yin Y (2021) Spin hall effect in heavy-ion collisions. Phys Rev D 104(5):054043. arXiv:2006.12421

  108. Fu B, Liu SYF, Pang L, Song H, Yin Y (2021) Shear-induced spin polarization in heavy-ion collisions. Phys Rev Lett 127(14):142301. arXiv:2103.10403

  109. Becattini F, Buzzegoli M, Palermo A (2021) Spin-thermal shear coupling in a relativistic fluid. Phys Lett B 820:136519. arXiv:2103.10917

  110. Becattini F, Buzzegoli M, Palermo A, Inghirami G, Karpenko I (2021) Local polarization and isothermal local equilibrium in relativistic heavy ion collisions. 3. arXiv:2103.14621

  111. Chen J-W, Pu S, Wang Q, Wang X-N (2013) Berry curvature and four-dimensional monopoles in the relativistic chiral kinetic equation. Phys Rev Lett 110(26):262301 arXiv:1210.8312

  112. Hidaka Y, Pu S, Yang D-L (2017) Relativistic chiral kinetic theory from quantum field theories. Phys Rev D 95(9):091901. arXiv:1612.04630

  113. Gao J-H, Pu S, Wang Q (2017) Covariant chiral kinetic equation in the Wigner function approach. Phys Rev D 96(1):016002. arXiv:1704.00244

  114. Hidaka Y, Pu S, Yang D-L (2018) Nonlinear responses of chiral fluids from kinetic theory. Phys Rev D 97(1):016004. arXiv:1710.00278

  115. Gao J-H, Liang Z-T, Wang Q, Wang X-N (2018) Disentangling covariant Wigner functions for chiral fermions. Phys Rev D 98(3):036019. arXiv:1802.06216

  116. Huang A, Shi S, Jiang Y, Liao J, Zhuang P (2018) Complete and consistent chiral transport from wigner function formalism. Phys Rev D 98(3):036010. arXiv:1801.03640

  117. Gao J-H, Liang Z-T, Wang Q (2020) Dirac sea and chiral anomaly in the quantum kinetic theory. Phys Rev D 101(9):096015. arXiv:1910.11060

  118. Wang Z, Guo X, Shi S, Zhuang P (2019) Mass correction to chiral kinetic equations. Phys Rev D 100(1):014015. arXiv:1903.03461

  119. Wang Z, Guo X, Shi S, Zhuang P (2021) Mass correction to chiral kinetic equations. Nucl Phys A 1005:121976. arXiv:2004.12174

  120. Chen S, Wang Z, Zhuang P (2021) Equal-time kinetic equations in a rotational field 1. arXiv:2101.07596

  121. Zhuang P-F, Heinz U (1998) Equal-time hierarchies in quantum transport theory. Phys Rev D 57:6525–6543 arXiv:hep-ph/9610438

  122. Liu Y-C, Huang X-G (2020) Anomalous chiral transports and spin polarization in heavy-ion collisions. Nucl Sci Tech 31(6):56. arXiv:2003.12482

  123. Gao J-H, Ma G-L, Pu S, Wang Q (2020) Recent developments in chiral and spin polarization effects in heavy-ion collisions. Nucl Sci Tech 31(9):90. arXiv:2005.10432

  124. Gao J-H, Liang Z-T, Wang Q (2021) Quantum kinetic theory for spin-1/2 fermions in Wigner function formalism. Int J Mod Phys A 36(01):2130001. arXiv:2011.02629

  125. Elze HT, Gyulassy M, Vasak D (1986) The QCD quark Wigner operator and semiclassical transport equations. In: 2nd Workshop on Local Equilibrium in Strong Interaction Physics

    Google Scholar 

  126. Elze HT, Gyulassy M, Vasak D (1986) Transport equations for the QCD quark wigner operator. Nucl Phys B 276:706–728

    Article  Google Scholar 

  127. Vasak D, Gyulassy M, Elze HT (1987) Quantum transport theory for abelian plasmas. Ann Phys 173:462–492

    Article  Google Scholar 

  128. Gao J-H, Liang Z-T, Pu S, Wang Q, Wang X-N (2012) Chiral anomaly and local polarization effect from quantum kinetic approach. Phys Rev Lett 109:232301 arXiv:1203.0725

  129. Gao J-H, Wang Q (2015) Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions. Phys Lett B 749:542–546. arXiv:1504.07334

  130. Hidaka Y, Pu S, Yang D-L (2019) Non-equilibrium quantum transport of chiral fluids from kinetic theory. Nucl Phys A 982:547–550. arXiv:1807.05018

  131. Liu Y-C, Gao L-L, Mameda K, Huang X-G (2019) Chiral kinetic theory in curved spacetime. Phys Rev D 99(8):085014. arXiv:1812.10127

  132. Gao J-H, Pu S, Wang Q (2013) Some issues of chiral anomaly in quantum kinetic approach. J Phys: Conf Ser 432:012010

    Google Scholar 

  133. Son DT, Yamamoto N (2012) Berry curvature, triangle anomalies, and the chiral magnetic effect in fermi liquids. Phys Rev Lett 109:181602 arXiv:1203.2697

  134. Chen J-W, Pang J-Y, Pu S, Wang Q (2014) Kinetic equations for massive Dirac fermions in electromagnetic field with non-Abelian Berry phase. Phys Rev D 89(9):094003 arXiv:1312.2032

  135. Xiao D, Chang M-C, Niu Q (2010) Berry phase effects on electronic properties. Rev Mod Phys 82:1959–2007 arXiv:0907.2021

    Article  MathSciNet  MATH  Google Scholar 

  136. Kharzeev DE, Stephanov MA, Yee H-U (2017) Anatomy of chiral magnetic effect in and out of equilibrium. Phys Rev D 95(5):051901. arXiv:1612.01674

  137. Gao J-H, Pang J-Y, Wang Q (2019) Chiral vortical effect in Wigner function approach. Phys Rev D 100(1):016008. arXiv:1810.02028

  138. Fang R-H, Gao J-H (2021) Chiral anomaly, dirac sea and berry monopole in wigner function approach. Nucl Phys A 1005:121851. arXiv:2002.04800

  139. Gao J-H, Liang Z-T (2019) Relativistic quantum kinetic theory for massive fermions and spin effects. Phys Rev D 100(5):056021. arXiv:1902.06510

  140. Weickgenannt N, Sheng X-L, Speranza E, Wang Q, Rischke DH (2019) Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism. Phys Rev D 100(5):056018. arXiv:1902.06513

  141. Yang D-L, Hattori K, Hidaka Y (2020) Effective quantum kinetic theory for spin transport of fermions with collsional effects. JHEP 07:070. arXiv:2002.02612

  142. Weickgenannt N, Speranza E, Sheng X-L, Wang Q, Rischke DH (2021) Generating spin polarization from vorticity through nonlocal collisions. Phys Rev Lett 127(5):052301. arXiv:2005.01506

  143. Weickgenannt N, Sheng X-L, Speranza E, Wang Q, Rischke DH (2020) Wigner function and kinetic theory for massive spin-1/2 particles. In: 28th international conference on ultrarelativistic nucleus-nucleus collisions (Quark Matter 2019) Wuhan, China, November 4–9, 2019. arXiv:2001.11862

  144. Li S, Yee H-U (2019) Quantum kinetic theory of spin polarization of massive quarks in perturbative QCD: leading log. Phys Rev D 100(5):056022. arXiv:1905.10463

  145. Wang Z, Guo X, Zhuang P (2021) Equilibrium spin distribution from detailed balance. Eur Phys J C 81(9):799. arXiv:2009.10930

  146. Gao H, Mo Z, Lin S (2020) Photon self-energy in a magnetized chiral plasma from kinetic theory. Phys Rev D 102(1):014011. arXiv:2002.07959

  147. Adam J et al (2018) Global polarization of \(\Lambda \) hyperons in Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. Phys Rev C 98:014910. arXiv:1805.04400

  148. Sheng X-L, Wang Q, Huang X-G (2020) Kinetic theory with spin: from massive to massless fermions. Phys Rev D 102(2):025019. arXiv:2005.00204

  149. Guo X (2020) Massless limit of transport theory for massive fermions. Chin Phys C 44(10):104106. arXiv:2005.00228

  150. Hattori K, Hongo M, Huang X-G, Matsuo M, Taya H (2019) Fate of spin polarization in a relativistic fluid: an entropy-current analysis. Phys Lett B 795:100–106. arXiv:1901.06615

  151. Fukushima K, Pu S (2021) Spin hydrodynamics and symmetric energy-momentum tensors – a current induced by the spin vorticity. Phys Lett B 817:136346. arXiv:2010.01608

  152. Li S, Stephanov MA, Yee H-U (2021) Nondissipative second-order transport, spin, and pseudogauge transformations in hydrodynamics. Phys Rev Lett 127(8):082302. arXiv:2011.12318

  153. Florkowski W, Friman B, Jaiswal A, Speranza E (2018) Relativistic fluid dynamics with spin. Phys Rev C 97(4):041901. arXiv:1705.00587

  154. Florkowski W, Speranza E, Becattini F (2018) Perfect-fluid hydrodynamics with constant acceleration along the stream lines and spin polarization. Acta Phys Polon B 49:1409. arXiv:1803.11098

  155. Florkowski W, Kumar A, Ryblewski R (2019) Relativistic hydrodynamics for spin-polarized fluids. Prog Part Nucl Phys 108:103709. arXiv:1811.04409

  156. Shi S, Gale C, Jeon S (2021) From chiral kinetic theory to relativistic viscous spin hydrodynamics. Phys Rev C 103(4):044906. arXiv:2008.08618

  157. Yang D-L (2018) Side-jump induced spin-orbit interaction of chiral fluids from kinetic theory. Phys Rev D 98(7):076019. arXiv:1807.02395

  158. Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R (2021) Dissipative spin dynamics in relativistic matter. Phys Rev D 103(1):014030. arXiv:2008.10976

  159. Voloshin Sergei A (2004) Parity violation in hot QCD: how to detect it. Phys Rev C 70:057901 arXiv:hep-ph/0406311

    Article  Google Scholar 

  160. Xu H-J, Zhao J, Wang X, Li H, Lin Z-W, Shen C, Wang F (2018) Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision. Chin Phys C 42(8):084103. arXiv:1710.07265

  161. Zhao J, Li H, Wang F (2019) Isolating the chiral magnetic effect from backgrounds by pair invariant mass. Eur Phys J C 79(2):168. arXiv:1705.05410

  162. Voloshin SA (2018) Estimate of the signal from the chiral magnetic effect in heavy-ion collisions from measurements relative to the participant and spectator flow planes. Phys Rev C 98(5):054911. arXiv:1805.05300

  163. Magdy N, Shi S, Liao J, Ajitanand N, Lacey RA (2018) New correlator to detect and characterize the chiral magnetic effect. Phys Rev C 97(6):061901. arXiv:1710.01717

  164. Magdy N, Shi S, Liao J, Liu P, Lacey RA (2018) Examination of the observability of a chiral magnetically driven charge-separation difference in collisions of the \(\rm ^{96}_{44}Ru + ^{96}_{44}Ru\) and \(\rm ^{96}_{40}Zr + ^{96}_{40}Zr\) isobars at energies available at the BNL Relativistic Heavy Ion Collider. Phys Rev C 98(6):061902. arXiv:1803.02416

  165. Tang AH (2020) Probe chiral magnetic effect with signed balance function. Chin Phys C 44(5):054101. arXiv:1903.04622

  166. Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N (2020) Mapping the phases of quantum chromodynamics with beam energy scan. Phys Rept 853:1–87. arXiv:1906.00936

  167. Kharzeev DE, Liao J, Voloshin SA, Wang G (2016) Chiral magnetic and vortical effects in high-energy nuclear collisions—a status report. Prog Part Nucl Phys 88:1–28. arXiv:1511.04050

  168. Zhao J, Wang F (2019) Experimental searches for the chiral magnetic effect in heavy-ion collisions. Prog Part Nucl Phys 107:200–236. arXiv:1906.11413

  169. Li W, Wang G (2020) Chiral magnetic effects in nuclear collisions. Ann Rev Nucl Part Sci 70:293–321. arXiv:2002.10397

  170. Bzdak A, Koch V, Liao J (2013) Charge-dependent correlations in relativistic heavy ion collisions and the chiral magnetic effect. Lect Notes Phys 871:503–536 arXiv:1207.7327

  171. Zhao J, Tu Z, Wang F (2018) Status of the chiral magnetic effect search in relativistic heavy-ion collisions. Nucl Phys Rev 35:225–242. arXiv:1807.05083

  172. Müller N, Schlichting S, Sharma S (2016) Chiral magnetic effect and anomalous transport from real-time lattice simulations. Phys Rev Lett 117(14):142301. arXiv:1606.00342

  173. Mace M, Schlichting S, Venugopalan R (2016) Off-equilibrium sphaleron transitions in the Glasma. Phys Rev D 93(7):074036. arXiv:1601.07342

  174. Mace M, Mueller N, Schlichting S, Sharma S (2017) Non-equilibrium study of the Chiral Magnetic Effect from real-time simulations with dynamical fermions. Phys Rev D 95(3):036023. arXiv:1612.02477

  175. Mace M, Mueller N, Schlichting S, Sharma S (2017) Simulating chiral magnetic effect and anomalous transport phenomena in the pre-equilibrium stages of heavy-ion collisions. Nucl Phys A 967:752–755. arXiv:1704.05887

  176. Lappi T, Schlichting S (2018) Linearly polarized gluons and axial charge fluctuations in the Glasma. Phys Rev D 97(3):034034. arXiv:1708.08625

  177. Wang F, Zhao J (2018) Search for the chiral magnetic effect in heavy ion collisions. Nucl Sci Tech 29(12):179

    Google Scholar 

  178. Inghirami G, Mace M, Hirono Y, Del Zanna L, Kharzeev DE, Bleicher M (2020) Magnetic fields in heavy ion collisions: flow and charge transport. Eur Phys J C 80(3):293. arXiv:1908.07605

  179. Guo X, Shi S, Xu N, Xu Z, Zhuang P (2015) Magnetic field effect on charmonium production in high energy nuclear collisions. Phys Lett B 751:215–219. arXiv:1502.04407

  180. Müller B, Schäfer A (2018) Chiral magnetic effect and an experimental bound on the late time magnetic field strength. Phys Rev D 98(7):071902. arXiv:1806.10907

  181. Guo Y, Shi S, Feng S, Liao J (2019) Magnetic field induced polarization difference between hyperons and anti-hyperons. Phys Lett B 798:134929. arXiv:1905.12613

  182. Guo X, Liao J, Wang E (2020) Spin hydrodynamic generation in the charged subatomic swirl. Sci Rep 10(1):2196. arXiv:1904.04704

  183. Xu K, Shi S, Zhang H, Hou D, Liao J, Huang M (2020) Extracting the magnitude of magnetic field at freeze-out in heavy-ion collisions. Phys Lett B 809:135706. arXiv:2004.05362

  184. Aaboud M et al (2018) Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at \(\sqrt{s_{{\rm NN}}}=5.02\) TeV with the ATLAS detector. Phys Rev Lett 121(21):212301 (2018). arXiv:1806.08708

  185. Adam J et al (2018) Low-\(p_T\)\(e^{+}e^{-}\) pair production in Au\(+\)Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV and U\(+\)U collisions at \(\sqrt{s_{NN}}\) = 193 GeV at STAR. Phys Rev Lett 121(13):132301. arXiv:1806.02295

  186. Zha W, Brandenburg JD, Tang Z, Xu Z (2020) Initial transverse-momentum broadening of Breit-Wheeler process in relativistic heavy-ion collisions. Phys Lett B 800:135089. arXiv:1812.02820

  187. Zha W, Ruan L, Tang Z, Xu Z, Yang S (2018) Coherent lepton pair production in hadronic heavy ion collisions. Phys Lett B 781:182–186. arXiv:1804.01813

  188. Klein S, Mueller AH, Xiao B-W, Yuan F (2019) Acoplanarity of a lepton pair to probe the electromagnetic property of quark matter. Phys Rev Lett 122(13):132301. arXiv:1811.05519

  189. Kharzeev DE (2006) Parity violation in hot QCD: why it can happen, and how to look for it. Phys Lett B 633:260–264 arXiv:hep-ph/0406125

  190. Shi S, Zhang H, Hou D, Liao J (2020) Signatures of chiral magnetic effect in the collisions of isobars. Phys Rev Lett 125:242301. arXiv:1910.14010

  191. Shi S, Jiang Y, Lilleskov E, Liao J (2018) Anomalous chiral transport in heavy ion collisions from anomalous-viscous fluid dynamics. Ann Phys 394:50–72. arXiv:1711.02496

  192. Jiang Y, Shi S, Yin Y, Liao J (2018) Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics. Chin Phys C 42(1):011001. arXiv:1611.04586

  193. Choudhury S et al (2021) Investigation of experimental observables in search of the chiral magnetic effect in heavy-ion collisions in the STAR experiment. 5. arXiv:2105.06044

  194. Christakoglou P, Qiu S, Staa J (2021) Systematic study of the chiral magnetic effect with the AVFD model at LHC energies. Eur Phys J C 81(8):717 (2021). arXiv:2106.03537

  195. Burnier Y, Kharzeev DE, Liao J, Yee H-U (2011) Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions. Phys Rev Lett 107:052303 arXiv:1103.1307

    Article  Google Scholar 

  196. Kharzeev DE, Son DT (2011) Testing the chiral magnetic and chiral vortical effects in heavy ion collisions. Phys Rev Lett 106:062301 arXiv:1010.0038

    Article  Google Scholar 

  197. Landsteiner K, Megias E, Melgar L, Pena-Benitez F (2011) Holographic gravitational anomaly and chiral vortical effect. JHEP 09:121 arXiv:1107.0368

    Article  MATH  Google Scholar 

  198. Hou D-F, Liu H, Ren H (2012) A possible higher order correction to the vortical conductivity in a gauge field plasma. Phys Rev D 86:121703 arXiv:1210.0969

    Article  Google Scholar 

  199. Wang F (2010) Effects of cluster particle correlations on local parity violation observables. Phys Rev C 81:064902 arXiv:0911.1482

    Article  Google Scholar 

  200. Liao J, Koch V, Bzdak A (2010) On the charge separation effect in relativistic heavy ion collisions. Phys Rev C 82:054902 arXiv:1005.5380

    Article  Google Scholar 

  201. Bzdak A, Koch V, Liao J (2011) Azimuthal correlations from transverse momentum conservation and possible local parity violation. Phys Rev C 83:014905 arXiv:1008.4919

    Article  Google Scholar 

  202. Schlichting S, Pratt S (2011) Charge conservation at energies available at the BNL relativistic heavy ion collider and contributions to local parity violation observables. Phys Rev C 83:014913 arXiv:1009.4283

    Article  Google Scholar 

  203. Pratt S, Schlichting S, Gavin S (2011) Effects of momentum conservation and flow on angular correlations at RHIC. Phys Rev C 84:024909 arXiv:1011.6053

    Article  Google Scholar 

  204. Asakawa M, Majumder A, Muller B (2010) Electric charge separation in strong transient magnetic fields. Phys Rev C 81:064912 arXiv:1003.2436

    Article  Google Scholar 

  205. Petersen H, Renk T, Bass SA (2011) Medium-modified jets and initial state fluctuations as sources of charge correlations measured at RHIC. Phys Rev C 83:014916 arXiv:1008.3846

    Article  Google Scholar 

  206. Abelev BI et al (2010) Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys Rev C 81:054908 arXiv:0909.1717

    Article  Google Scholar 

  207. Abelev B et al (2013) Charge separation relative to the reaction plane in Pb-Pb collisions at \(\sqrt{s_{{\rm NN}}}= 2.76\) TeV. Phys Rev Lett 110(1):012301. arXiv:1207.0900

  208. Khachatryan V et al (2016) Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect. Phys Rev Lett. arXiv:1610.00263. [Phys Rev Lett 118:122301 (2017)]

  209. Adam J et al (2019) Charge-dependent pair correlations relative to a third particle in \(p\) + Au and \(d\)+ Au collisions at RHIC. Phys Lett B 798:134975. arXiv:1906.03373

  210. Belmont R, Nagle JL (2017) To CME or not to CME? Implications of p+Pb measurements of the chiral magnetic effect in heavy ion collisions. Phys Rev C 96(2):024901. arXiv:1610.07964

  211. Adam J et al (2022) Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at \(\sqrt{s_{_{\rm NN}}}\)= 200 GeV. Phys. Rev. C. arXiv:2006.05035

  212. Acharya S et al (2020) Constraining the chiral magnetic effect with charge-dependent azimuthal correlations in Pb-Pb collisions at \( \sqrt{s_{{\rm NN}}} \) = 2.76 and 5.02 TeV. JHEP 09:160. arXiv:2005.14640

  213. Zhao J, Feng Y, Li H, Wang F (2020) HIJING can describe the anisotropy-scaled charge-dependent correlations at the BNL Relativistic Heavy Ion Collider. Phys Rev C 101(3):034912. arXiv:1912.00299

  214. Schukraft J, Timmins A, Voloshin SA (2013) Ultra-relativistic nuclear collisions: event shape engineering. Phys Lett B 719:394–398 arXiv:1208.4563

    Article  Google Scholar 

  215. Adamczyk L et al (2014) Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus collisions at \(\sqrt{{s}_{NN}} =\) 200 GeV. Phys Rev C 89(4):044908 arXiv:1303.0901

    Article  Google Scholar 

  216. Wang F, Zhao J (2017) Challenges in flow background removal in search for the chiral magnetic effect. Phys Rev C 95(5):051901. arXiv:1608.06610

  217. Acharya S et al (2018) Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb-Pb collisions at \(\sqrt{s_{{\rm NN}}}\) = 2.76 TeV. Phys Lett B 777:151–162. arXiv:1709.04723

  218. Sirunyan AM et al (2018) Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in \(p\rm Pb\) and PbPb collisions at the CERN Large Hadron Collider. Phys Rev C 97(4):044912. arXiv:1708.01602

  219. Zhao J (2019) Measurements of the chiral magnetic effect with background isolation in 200 GeV Au+Au collisions at STAR. Nucl Phys A 982:535–538. arXiv:1807.09925

  220. Zhao J (2021) Search for CME in U+U and Au+Au collisions in STAR with different approaches of handling backgrounds. Nucl Phys A 1005:121766. arXiv:2002.09410

  221. Abdallah M et al (2021) Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys Rev Lett 128:092301. arXiv:2106.09243

  222. Feng Y, Zhao J, Li H, Xu H-J, Wang F (2021) Two- and three-particle nonflow contributions to the chiral magnetic effect measurement by spectator and participant planes in relativistic heavy ion collisions. Phys Rev C 105:024913. arXiv:2106.15595

  223. Yufu L (2021) Measurement of the charge separation along the magnetic field with signed balance function in 200 gev au + au collisions at star. Nucl Phys A 1005:121828

    Article  Google Scholar 

  224. Ajitanand NN, Lacey RA, Taranenko A, Alexander JM (2011) A New method for the experimental study of topological effects in the quark-gluon plasma. Phys Rev C 83:011901 (2011). arXiv:1009.5624

  225. Huang L, Nie M-W, Ma G-L (2020) Sensitivity analysis for observables of the chiral magnetic effect using a multiphase transport model. Phys Rev C 101(2):024916. arXiv:1906.11631

  226. Magdy N, Nie M-W, Ma G-L, Lacey RA (2020) A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation. Phys Lett B 809:135771. arXiv:2002.07934

  227. Bozek P (2018) Azimuthal angle dependence of the charge imbalance from charge conservation effects. Phys Rev C 97(3):034907. arXiv:1711.02563

  228. Feng Y, Zhao J, Wang F (2018) Responses of the chiral-magnetic-effect-sensitive sine observable to resonance backgrounds in heavy-ion collisions. Phys Rev C 98(3):034904. arXiv:1803.02860

  229. Feng Y, Zhao J, Xu H-J, Wang F (2021) Decipher the \(R_{\Psi _{m}}\) correlator in search for the chiral magnetic effect in relativistic heavy ion collisions. Phys Rev C 103:034912. arXiv:2011.01123

  230. Feng Y, Wang F, Zhao J (2009) Comment on “A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation” by Magdy, Nie, Ma, and Lacey. arXiv:2020.10057

  231. Yannis B, Kharzeev Dmitri E, Jinfeng L, Ho-Ung Y (2011) Chiral magnetic wave at finite baryon density and the electric quadrupole moment of the quark-gluon plasma. Phys Rev Lett 107:052303

    Article  Google Scholar 

  232. Metlitski Max A, Zhitnitsky Ariel R (2005) Anomalous axion interactions and topological currents in dense matter. Phys Rev D 72:045011

    Article  Google Scholar 

  233. Newman GM (2006) Anomalous hydrodynamics. JHEP 01:158 arXiv:hep-ph/0511236

  234. Gorbar EV, Miransky VA, Shovkovy IA (2011) Normal ground state of dense relativistic matter in a magnetic field. Phys Rev D 83:085003

    Article  MATH  Google Scholar 

  235. Sirunyan AM et al (2019) Probing the chiral magnetic wave in \(pPb\) and PbPb collisions at \(\sqrt{s_{NN}}\) =5.02TeV using charge-dependent azimuthal anisotropies. Phys Rev C 100(6):064908. arXiv:1708.08901

  236. Belmont R (2014) Charge-dependent anisotropic flow studies and the search for the chiral magnetic wave in ALICE. Nucl Phys A 931:981–985 arXiv:1408.1043

    Article  Google Scholar 

  237. Bzdak A, Bozek P (2013) Contributions to the event-by-event charge asymmetry dependence for the elliptic flow of \(pi^{+}\) and \(pi^{-}\) in heavy-ion collisions. Phys Lett B 726:239–243 arXiv:1303.1138

    Article  Google Scholar 

  238. Voloshin SA (2010) Testing the chiral magnetic effect with central U+U collisions. Phys Rev Lett 105:172301 arXiv:1006.1020

    Article  Google Scholar 

  239. Deng W-T, Huang X-G, Ma G-L, Wang G (2016) Test the chiral magnetic effect with isobaric collisions. Phys Rev C 94:041901. arXiv:1607.04697

  240. Deng W-T, Huang X-G, Ma G-L, Wang G (2018) Predictions for isobaric collisions at \(\sqrt{s_{_{\rm NN}}}\) = 200 GeV from a multiphase transport model. Phys Rev C 97(4):044901. arXiv:1802.02292

  241. Abdallah M et al (2022) Search for the chiral magnetic effect with isobar collisions at \(\sqrt{s_{NN}}\)=200 GeV by the STAR Collaboration at the BNL relativistic heavy ion collider. Phys Rev C 105(1):014901. arXiv:2109.00131

  242. Xu H-J, Wang X, Li H, Zhao J, Lin Z-W, Shen C, Wang F (2018) Importance of isobar density distributions on the chiral magnetic effect search. Phys Rev Lett 121(2):022301

    Google Scholar 

  243. Feng Y, Lin Y, Zhao J, Wang F (2021) Revisit the chiral magnetic effect expectation in isobaric collisions at the relativistic heavy ion collider. Phys Lett B 820:136549. arXiv:2103.10378

  244. Adam J et al (2021) Methods for a blind analysis of isobar data collected by the STAR collaboration. Nucl Sci Tech 32(5):48. arXiv:1911.00596

  245. Liang Z-T, Wang X-N (2005) Globally polarized quark-gluon plasma in non-central A+A collisions. Phys Rev Lett 94:102301. arXiv:nucl-th/0410079. [Erratum: Phys Rev Lett 96:039901 (2006)]

  246. Liang Z-T, Wang X-N (2005) Spin alignment of vector mesons in non-central A+A collisions. Phys Lett B 629:20–26. arXiv:nucl-th/0411101

  247. Gao J-H, Chen S-W, Deng W, Liang Z-T, Wang Q, Wang X-N (2008) Global quark polarization in non-central A+A collisions. Phys Rev C 77:044902 arXiv:0710.2943

    Article  Google Scholar 

  248. Liang Z-T, Song J, Upsal I, Wang Q, Xu Z-B (2021) Rapidity dependence of global polarization in heavy ion collisions. Chin Phys C 45(1):014102. arXiv:1912.10223

  249. Brodsky SJ, Gunion JF, Kuhn JH (1977) Hadron production in nuclear collisions: a new parton model approach. Phys Rev Lett 39:1120

    Google Scholar 

  250. Betz B, Gyulassy M, Torrieri G (2007) Polarization probes of vorticity in heavy ion collisions. Phys Rev C 76:044901 arXiv:0708.0035

    Article  Google Scholar 

  251. Zhang J-J, Fang R-H, Wang Q, Wang X-N (2019) A microscopic description for polarization in particle scatterings. Phys Rev C 100(6):064904. arXiv:1904.09152

  252. Becattini F, Grossi E (2015) Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration. Phys Rev D 92:045037. arXiv:1505.07760

  253. Florkowski W, Kumar A, Ryblewski R (2018) Thermodynamic versus kinetic approach to polarization-vorticity coupling. Phys Rev C 98(4):044906. arXiv:1806.02616

  254. Cristina M, Torres-Rincon Juan M (2014) Kinetic theory of chiral relativistic plasmas and energy density of their gauge collective excitations. Phys Rev D 89(9):096002 arXiv:1312.1158

    Article  Google Scholar 

  255. Cristina M, Torres-Rincon Juan M (2014) Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory. Phys. Rev. D 90(7):076007 arXiv:1404.6409

    Article  Google Scholar 

  256. Sun Y, Ko CM (2017) \(\Lambda \) hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach. Phys Rev C 96(2):024906 (2017). arXiv:1706.09467

  257. Sun Y, Ko CM (2019) Azimuthal angle dependence of the longitudinal spin polarization in relativistic heavy ion collisions. Phys Rev C 99(1):011903. arXiv:1810.10359

  258. Zhou W-H, Xu J (2018) Simulating the chiral magnetic wave in a box system. Phys Rev C 98(4):044904 (2018). arXiv:1810.01030

  259. Zhou W-H, Xu J (2019) Simulating chiral anomalies with spin dynamics. Phys Lett B 798:134932. arXiv:1904.01834

  260. Liu SYF, Sun Y, Ko CM (2020) Spin polarizations in a covariant angular-momentum-conserved chiral transport model. Phys Rev Lett 125(6):062301. arXiv:1910.06774

  261. Heinz Ulrich W (1983) Kinetic theory for nonabelian plasmas. Phys Rev Lett 51:351

    Article  Google Scholar 

  262. Zubarev DN, Prozorkevich AV, Smolyanskii SA (1979) Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics. Theor Math Phys 40(3):821–831

    Article  MathSciNet  MATH  Google Scholar 

  263. van Weert ChG (1982) Maximum entropy principle and relativistic hydrodynamics. Ann Phys 140(1):133–162

    Google Scholar 

  264. Becattini F, Bucciantini L, Grossi E, Tinti L (2015) Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid. Eur Phys J C 75(5):191 arXiv:1403.6265

    Article  Google Scholar 

  265. Becattini F, Lisa MA (2020) Polarization and vorticity in the quark–gluon plasma. Ann Rev Nucl Part Sci 70:395–423. arXiv:2003.03640

  266. Speranza E, Weickgenannt N (2021) Spin tensor and pseudo-gauges: from nuclear collisions to gravitational physics. Eur Phys J A 57(5):155. arXiv:2007.00138

  267. Csernai LP, Wang DJ, Bleicher M, Stöcker H (2014) Vorticity in peripheral collisions at the facility for antiproton and ion research and at the JINR nuclotron-based ion collider facility. Phys Rev C 90(2):021904

    Article  Google Scholar 

  268. Del Zanna L, Chandra V, Inghirami G, Rolando V, Beraudo A, De Pace A, Pagliara G, Drago A, Becattini F (2013) Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP. Eur Phys J C 73:2524 arXiv:1305.7052

    Article  Google Scholar 

  269. Pang L, Wang Q, Wang X-N (2012) Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics. Phys Rev C 86:024911 arXiv:1205.5019

    Article  Google Scholar 

  270. Pang L-G, Petersen H, Wang X-N (2018) Pseudorapidity distribution and decorrelation of anisotropic flow within the open-computing-language implementation CLVisc hydrodynamics. Phys Rev C 97(6):064918. arXiv:1802.04449

  271. Huang X-G, Liao J, Wang Q, Xia X-L (2020) Vorticity and spin polarization in heavy ion collisions: transport models, vol 10. arXiv:2010.08937

  272. Wu H-Z, Pang L-G, Huang X-G, Wang Q (2019) Local spin polarization in high energy heavy ion collisions. Phys Rev Res 1:033058. arXiv:1906.09385

  273. Overseth OE, Roth RF (1967) Time reversal invariance in lambda0 decay. Phys Rev Lett 19:391–393

    Article  Google Scholar 

  274. Abelev BI et al (2007) Global polarization measurement in Au+Au collisions. Phys Rev C 76:024915. arXiv:0705.1691. [Erratum: Phys Rev C 95:039906 (2017)]

  275. Poskanzer AM, Voloshin SA (1998) Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys Rev C 58:1671–1678. arXiv:nucl-ex/9805001

  276. Kornas FJ (2020) \( \Lambda \) polarization in Au+Au collisions at \( \sqrt{s}_{NN} = 2.4\,{\text{GeV}} \) measured with hades. Springer Proc Phys 250:435–439

    Google Scholar 

  277. Abdallah MS et al (2021) Global \(\Lambda \)-hyperon polarization in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}=3\) GeV. Phys Rev C 104(6):L061901. arXiv:2108.00044

  278. Chensheng Z (2019) \(\phi \) meson and K * 0 global spin alignment at STAR. Nucl Phys A 982:559–562

    Article  Google Scholar 

  279. Acharya S et al (2020) Global polarization of \(\Lambda \bar{\Lambda }\) hyperons in Pb-Pb collisions at \(\sqrt{s_{NN}}\) = 2.76 and 5.02 TeV. Phys Rev C 101(4):044611. arXiv:1909.01281

  280. Vitiuk O, Bravina LV, Zabrodin EE (2020) Is different \(\Lambda \) and \(\bar{\Lambda }\) polarization caused by different spatio-temporal freeze-out picture? Phys Lett B 803:135298 (2020). arXiv:1910.06292

  281. Csernai LP, Kapusta JI, Welle T (2019) \(\Lambda \) and \(\bar{\Lambda }\) spin interaction with meson fields generated by the baryon current in high energy nuclear collisions. Phys Rev C 99(2):021901. arXiv:1807.11521

  282. Adam J et al (2020) Global polarization of \(\Xi \) and \(\Omega \) hyperons in Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. 12. arXiv:2012.13601

  283. Adam J et al (2019) Polarization of \(\Lambda \) (\(\bar{\Lambda }\)) hyperons along the beam direction in Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. Phys Rev Lett 123(13):132301 (2019). arXiv:1905.11917

  284. Schilling K, Seyboth P, Wolf GE (1970) On the analysis of vector meson production by polarized photons. Nucl Phys B 15:397–412. [Erratum: Nucl Phys B 18:332 (1970)]

    Google Scholar 

  285. Abelev BI et al (2008) Spin alignment measurements of the K*0(892) and phi (1020) vector mesons in heavy ion collisions at s(NN)**(1/2) = 200 GeV. Phys Rev C 77:061902 arXiv:0801.1729

    Article  Google Scholar 

  286. Singha S (2021) Measurement of global spin alignment of \(K^{*0}\)and \(\phi \) vector mesons using the STAR detector at RHIC. Nucl Phys A 1005:121733. arXiv:2002.07427

  287. Sheng X-L, Oliva L, Wang Q (2020) What can we learn from the global spin alignment of \(\phi \) mesons in heavy-ion collisions? Phys Rev D 101(9):096005. arXiv:1910.13684

  288. Sheng X-L, Wang Q, Wang X-N (2020) Improved quark coalescence model for spin alignment and polarization of hadrons. Phys Rev D 102(5):056013. arXiv:2007.05106

  289. Guo Y, Liao J, Wang E, Xing H, Zhang H (2021) Locating the most vortical fluid in nuclear collisions with beam energy scan 5. arXiv:2105.13481

  290. Fukushima K, Mohanty B, Xu N (2021) Little-Bang and Femto-Nova in nucleus-nucleus collisions. AAPPS Bull 31:1. arXiv:2009.03006

Download references

Acknowledgements

X.-G. Huang is supported by NSFC under Grant No. 12075061 and Shanghai NSF under Grant No. 20ZR1404100. S.P. is supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 12075235 and 12135011. S.Z.S. is grateful for the support from the Natural Sciences and Engineering Research Council of Canada, the Bourses d’excellence pour étudiants étrangers (PBEEE) from Le Fonds de Recherche du Québec—Nature et technologies (FRQNT), and the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Grant No. DE-FG88ER40388. S.S. is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB34000000. A.H.T. is funded by the US Department of Energy under Grant Nos. DE-AC02-98CH10886 and DE-FG02-89ER40531. F.Q.W. is supported in part by the US Department of Energy under Grant No. DE-SC0012910 and the National Nature Science Foundation of China (NSFC) under Grant No. 12035006. Q.W. is supported in part by the National Nature Science Foundation of China (NSFC) Grant Nos. 11890713 (a subgrant of No. 11890710) and 12135011 and by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB34030102. Y.Y. is supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB34000000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, X.G. et al. (2022). Nuclear Matter Under Extreme External Fields. In: Luo, X., Wang, Q., Xu, N., Zhuang, P. (eds) Properties of QCD Matter at High Baryon Density. Springer, Singapore. https://doi.org/10.1007/978-981-19-4441-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4441-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4440-6

  • Online ISBN: 978-981-19-4441-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics