Skip to main content

Advances in Mycobacterial Laboratories: What Is the Latest Laboratory Approach to Diagnose and Manage Pulmonary TB?

  • Chapter
  • First Online:
Pulmonary Tuberculosis and Its Prevention
  • 259 Accesses

Abstract

Laboratory examination is one of the key factors in the management and diagnosis of TB as well as for, follow-up and decision to cure. So far, we have been using conventional smear microscopy and culture techniques; however, the situation has been changing in the last decade. As expected, conventional technologies are shifting to molecular-based technologies. Given the rapid nature of DNA-based molecular technologies, the turn-around time of reporting results, especially in Mycobacterium tuberculosis detection/identification and drug susceptibility testing, has reduced. Other technologies, such as, antigen detection using specimens other than sputum and the use of biomarkers (lipoarabinomannan, ESAT-6/CFP-10, and MPT64), have also become available in clinical practices. The new laboratory examinations have many advantages, although new problems have also emerged. In-depth knowledge of the merits and demerits of the new laboratory examinations is warranted, which will provide useful information if we can realize the details of each technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 2018 Jun;68(6):1825–9.

    Article  PubMed  Google Scholar 

  2. Hoefsloot W, Van Ingen J, Andrejak C, Ängeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13.

    Article  PubMed  Google Scholar 

  3. Bhat J, Rao V, Muniyandi M, Yadav R, Karforma C, Luke C. Impact of sputum quality and quantity on smear and culture positivity: findings from a tuberculosis prevalence study in Central India. Trans R Soc Trop Med Hyg. 2014;108(1):55–6.

    Article  PubMed  Google Scholar 

  4. Miller DL. A study of techniques for the examination of Sputum in a field survey of chronic bronchitis. Am Rev Respir Dis. 1963 Oct;88:473–83.

    CAS  PubMed  Google Scholar 

  5. Alisjahbana B, Van Crevel R, Danusantoso H, Gartinah T, Soemantri ES, Nelwan RHH, et al. Better patient instruction for sputum sampling can improve microscopic tuberculosis diagnosis. Int J Tuberc Lung Dis. 2005;9(7):814–7.

    CAS  PubMed  Google Scholar 

  6. Yoon SH, Lee NK, Yim JJ. Impact of sputum gross appearance and volume on smear positivity of pulmonary tuberculosis: a prospective cohort study. BMC Infect Dis [Internet]. 2012;12(1):1. Available from: BMC Infectious Diseases

    Google Scholar 

  7. Bastian I, Fujiki A, Gilpin C, Man Kam K, Lumb R. Quality Assurance of Sputum Microscopy in DOTS Programmes countries in the Western Pacific quality Assurance of Sputum Microscopy in DOTS Programmes. Who [Internet]. 2003;45. Available from: http://www.who.int/ihr/training/laboratory_quality/11_cd_rom_tb_eqa_wpro.pdf

  8. Thomas TA, Heysell SK, Moodley P, Montreuil R, Ha X, Friedland G, et al. Intensified specimen collection to improve tuberculosis diagnosis in children from rural South Africa, an observational study. BMC Infect Dis. 2014;14(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sakashita K, Fujita A, Takamori M, Nagai T, Matsumoto T, Saito T, et al. Efficiency of the lung flute for sputum induction in patients with presumed pulmonary tuberculosis. Clin Respir J. 2018;12(4):1503–9.

    Article  CAS  PubMed  Google Scholar 

  10. Williams CML, Cheah ESG, Malkin J, Patel H, Otu J, Mlaga K, et al. Face mask sampling for the detection of mycobacterium tuberculosis in expelled aerosols. PLoS One. 2014;9(8):1–7.

    Article  Google Scholar 

  11. Williams CM, Abdulwhhab M, Birring SS, De Kock E, Garton NJ, Townsend E, et al. Exhaled mycobacterium tuberculosis output and detection of subclinical disease by face-mask sampling: prospective observational studies. Lancet Infect Dis [Internet]. 2020;20(5):607–17. https://doi.org/10.1016/S1473-3099(19)30707-8.

    Article  CAS  PubMed  Google Scholar 

  12. World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-Rapid diagnostics for tuberculosis detection. https://www.Who.Int/Publications/I/Item/Who-Consolidated-Guidelines-on-Tuberculosis-Module-3-Diagnosis-Rapid-Diagnostics-for-Tuberculosis-Detection. 2020.

  13. Sharma S, Shulania A, Achra A, Jeram H, Kansra S, Duggal N. Diagnosis of pulmonary tuberculosis from gastric aspirate samples in nonexpectorating pediatric patients in a tertiary care hospital. Indian J Pathol Microbiol. 2020;63(2):210–3.

    Article  PubMed  Google Scholar 

  14. Singh S, Singh A, Prajapati S, Kabra SK, Lodha R, Mukherjee A, et al. Xpert MTB/RIF assay can be used on archived gastric aspirate and induced sputum samples for sensitive diagnosis of paediatric tuberculosis. BMC Microbiol. 2015;15(1):191.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bates M, O’Grady J, Maeurer M, Tembo J, Chilukutu L, Chabala C, et al. Assessment of the Xpert MTB/RIF assay for diagnosis of tuberculosis with gastric lavage aspirates in children in sub-Saharan Africa: a prospective descriptive study. Lancet Infect Dis. 2013;13(1):36–42.

    Article  PubMed  Google Scholar 

  16. Owens S, Abdel-Rahman IE, Balyejusa S, Musoke P, Cooke RPD, Parry CM, et al. Nasopharyngeal aspiration for diagnosis of pulmonary tuberculosis. Arch Dis Child. 2007;92(8):693–6.

    Article  CAS  PubMed  Google Scholar 

  17. Zar HJ, Workman LJ, Prins M, Bateman LJ, Mbhele SP, Whitman CB, et al. Tuberculosis diagnosis in children using Xpert ultra on different respiratory specimens. Am J Respir Crit Care Med. 2019;200(12):1531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oramasionwu GE, Heilig CM, Udomsantisuk N, Kimerling ME, Eng B, Nguyen HD, et al. The utility of stool cultures for diagnosing tuberculosis in people living with the human immunodeficiency virus. Int J Tuberc Lung Dis. 2013;17(8):1023–8.

    Article  CAS  PubMed  Google Scholar 

  19. Walters E, Demers AM, Van Der Zalm MM, Whitelaw A, Palmer M, Bosch C, et al. Stool culture for diagnosis of pulmonary tuberculosis in children. J Clin Microbiol. 2017;55(12):3355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. MacLean E, Sulis G, Denkinger CM, Johnston JC, Pai M, Khana FA. Diagnostic accuracy of stool Xpert MTB/RIF for detection of pulmonary tuberculosis in children: a systematic review and meta-analysis. J Clin Microbiol. 2019;57(6):1–12.

    Article  Google Scholar 

  21. Kabir S, Rahman SMM, Ahmed S, Islam MS, Banu RS, Shewade HD, et al. Xpert ultra assay on stool to diagnose pulmonary tuberculosis in children. Clin Infect Dis. 2020;73(2):1–9.

    Google Scholar 

  22. Ghosh HK, Cobb M, Pacey DP, Conklin S. Experience with a simplification of the Petroff method for laboratory diagnosis of mycobacteria in Sputum. Pathology [Internet]. 1978;10(3):257–61. Available from: https://www.tandfonline.com/doi/abs/10.3109/00313027809063509

    CAS  PubMed  Google Scholar 

  23. de Kantor INLA. In: GangadharamP PRJ, Jenkins A, editors. Tuberculosis: laboratory procedure for developing countries. New Tork: Chapman Hall ITP; 1998. p. 351–9.

    Google Scholar 

  24. Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res [Internet]. 2018;52(7):751–62. https://doi.org/10.1080/10715762.2018.1468564.

    Article  CAS  PubMed  Google Scholar 

  25. Plongla R, Preece CL, Perry JD, Gilligan PH. Evaluation of RGM medium for isolation of nontuberculous mycobacteria from respiratory samples from patients with cystic fibrosis in the United States. J Clin Microbiol. 2017;55(5):1469–77.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asmar S, Drancourt M. Chlorhexidine decontamination of sputum for culturing mycobacterium tuberculosis. BMC Microbiol [Internet]. 2015;15(1):4–9. https://doi.org/10.1186/s12866-015-0479-4.

    Article  CAS  Google Scholar 

  27. Kent PT, Kubica GP. Public health mycobacteriology: a guide for the level III Laboratory. 1985;

    Google Scholar 

  28. Ratnam S, March SB. Effect of relative centrifugal force and centrifugation time on sedimentation of mycobacteria in clinical specimens. J Clin Microbiol. 1986;23(3):582–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoshimatsu S, Kato-Matsumaru T, Aono A, Chikamatsu K, Yamada H, Mitarai S. Factors contribute to efficiency of specimen concentration of mycobacterium tuberculosis by centrifugation and magnetic beads. Int J Mycobacteriol. 2015;4(3):245–9.

    Article  PubMed  Google Scholar 

  30. Asmar S, Chatellier S, Mirande C, Van Belkum A, Canard I, Raoult D, et al. A novel solid medium for culturing mycobacterium tuberculosis isolates from clinical specimens. J Clin Microbiol. 2015;53(8):2566–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghodbane R, Raoult D, Drancourt M. Dramatic reduction of culture time of mycobacterium tuberculosis. Sci Rep. 2014;4:4–7.

    Article  Google Scholar 

  32. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–73.

    Article  CAS  PubMed  Google Scholar 

  33. Moore DF, Curry JI, Knott CA, Jonas V. Amplification of rRNA for assessment of treatment response of pulmonary tuberculosis patients during antimicrobial therapy. J Clin Microbiol. 1996;34(7):1745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsara V, Serasli E, Christaki P. Problems in diagnosis and treatment of tuberculosis infection. Hippokratia. 2009;13(1):20–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, et al. Rapid detection of mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol. 2010;48(1):229–37.

    Article  CAS  PubMed  Google Scholar 

  36. Lawn SD, Nicol MP. Erratum: Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. (Future Microbiology (2011) 6:9 (1067-1082)). Future Microbiol. 2012;7(8):1024.

    Google Scholar 

  37. Steingart KR, Sohn H, Schiller I, Kloda LA, Boehme CC, Pai M, Dendukuri N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2013;31(1):CD009593. https://doi.org/10.1002/14651858.CD009593.pub2. Update in: Cochrane Database Syst Rev. 2014;(1):CD009593. PMID: 23440842; PMCID: PMC4470352.

  38. Horne D, Kohli M, Zifodya J, Schiller I, Dendukuri N, Tollefson D, et al. Horne DJ, Kohli M, Zifodya JS, Schiller I, Dendukuri N, Tollefson D, Schumacher SG, Ochodo EA, Pai M, Steingart KR. Cochrane Database Syst Rev 2019;(6).

    Google Scholar 

  39. Sohn H, Aero AD, Menzies D, Behr M, Schwartzman K, Alvarez GG, et al. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. Clin Infect Dis. 2014;58(7):970–6.

    Article  PubMed  Google Scholar 

  40. Tsuyuguchi K, Nagai H, Ogawa K, Matsumoto T, Morimoto K, Takaki A, et al. Performance evaluation of Xpert MTB/RIF in a moderate tuberculosis incidence compared with TaqMan MTB and TRCRapid M.TB. J Infect Chemother. 2017;23(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  41. Zong K, Luo C, Zhou H, Jiang Y, Li S. Xpert MTB/RIF assay for the diagnosis of rifampicin resistance in different regions: a meta-analysis. BMC Microbiol. 2019;19(1):1–21.

    Article  CAS  Google Scholar 

  42. WHO. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance : xpert MTB/Rif System policy statement. world health [Internet]. 2011;1–35. Available from: http://www.stoptb.org/wg/gli/assets/documents/XpertImplementationDocument.pdf

  43. World Health Organisation. Guidelines for the programmatic management of. 2011.

    Google Scholar 

  44. WHO. Companion handbook. World Health Organization. 2014. 464.

    Google Scholar 

  45. Jaleta KN, Gizachew M, Gelaw B, Tesfa H, Getaneh A, Biadgo B. Rifampicin-resistant Mycobacterium tuberculosis among tuberculosis-presumptive cases at University of Gondar hospital, Northwest Ethiopia. Infect Drug Resist. 2017;10:185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Traore H, Fissette K, Bastian I, Devleeschouwer M, Portaels F. Detection of rifampicin resistance in mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an initial indicator of multidrug resistance. Int J Tuberc Lung Dis. 2000;4(5):481–4.

    CAS  PubMed  Google Scholar 

  47. Kenaope L, Ferreira H, Seedat F, Otwombe K, Martinson NA, Variava E. Sputum culture and drug sensitivity testing outcome among X-pert Mycobacterium tuberculosis/rifampicin-positive, rifampicin-resistant sputum: a retrospective study–not all rifampicin resistance is multi-drug resistant. J Glob Antimicrob Resist [Internet]. 2020;21:434–8. https://doi.org/10.1016/j.jgar.2019.11.008.

    Article  PubMed  Google Scholar 

  48. Mathys V, Van De Vyvere M, De Droogh E, Soetaert K, Groenen G. False-positive rifampicin resistance on Xpert®MTB/RIF caused by a silent mutation in the rpoB gene. Int J Tuberc Lung Dis. 2014;18(10):1255–7.

    Article  CAS  PubMed  Google Scholar 

  49. Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B, et al. Xpert MTB/RIF ultra for detection of mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18(1):76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Plannning for country to Xpert MTB/RIF Ultra.

    Google Scholar 

  51. World Health Organization. Meeting report of a technical expert consultation : non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF 2017;1–11. Available from: http://apps.who.int/bookorders.

  52. Feuerriegel S, Kohl TA, Utpatel C, Andres S, Maurer FP, Heyckendorf J, et al. Rapid genomic first- and second-line drug resistance prediction from clinical mycobacterium tuberculosis specimens using Deeplex®-MycTB. Eur Respir J [Internet]. 2020;1:2001796. Available from: http://erj.ersjournals.com/content/early/2020/06/25/13993003.01796-2020.abstract

    Google Scholar 

  53. Sputum M, Cao Y, Parmar H, Gaur RL, Lieu D, Raghunath S, et al. Xpert MTB/XDR : a 10-Color Re fl Ex assay suitable for point-of- care settings to detect isoniazid, fluoroquinolone, and second-line-injectable-drug resistance directly from.

    Google Scholar 

  54. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mitarai S, Okumura M, Toyota E, Yoshiyama T, Aono A, Sejimo A, et al. Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis. 2011;15(9):1211–7.

    Article  CAS  PubMed  Google Scholar 

  56. World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. 2016.

    Google Scholar 

  57. Shete PB, Farr K, Strnad L, Gray CM, Cattamanchi A. Diagnostic accuracy of TB-LAMP for pulmonary tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2019;19(1):1–29.

    Article  Google Scholar 

  58. Nakiyingi L, Nakanwagi P, Briggs J, Agaba T, Mubiru F, Mugenyi M, et al. Performance of loop-mediated isothermal amplification assay in the diagnosis of pulmonary tuberculosis in a high prevalence TB/HIV rural setting in Uganda. BMC Infect Dis. 2018;18(1):1–10.

    Article  Google Scholar 

  59. Nliwasa M, MacPherson P, Chisala P, Kamdolozi M, Khundi M, Kaswaswa K, et al. The sensitivity and specificity of loop-mediated isothermal amplification (LAMP) assay for tuberculosis diagnosis in adults with chronic cough in Malawi. PLoS One [Internet]. 2016;11(5):1–13. https://doi.org/10.1371/journal.pone.0155101.

    Article  CAS  Google Scholar 

  60. WHO. Rapid Communication : molecular assays as initial tests for the diagnosis of tuberculosis and rifampicin resistance. World Heal Organ [Internet]. 2020; Policy upd (January):1–8. Available from: http://apps.who.int/bookorders.

  61. Nikam C, Kazi M, Nair C, Jaggannath M, Manoj MM, Vinaya RV, et al. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int J Mycobacteriol [Internet]. 2014;3(3):205–10. https://doi.org/10.1016/j.ijmyco.2014.04.003.

    Article  PubMed  Google Scholar 

  62. Seifert M, Ajbani K, Georghiou SB, Catanzaro D, Rodrigues C, Crudu V, et al. A performance evaluation of MTBDRplus version 2 for the diagnosis of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2016;20(5):631–7.

    Article  CAS  PubMed  Google Scholar 

  63. World Health Organization. The use of molecular line probe assays for the detection of resistance to isoniazid and rifampicin Policy update. 2016; Available from: https://www.libnauka.ru/item.php?doi=10.7868/S2587667820060357

  64. WHO. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Policy guidance. WHO/HTM/TB/2016.07. Geneva, Switzerland: World Health Organization; 2016.

    Google Scholar 

  65. World Health Organization. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis [Internet]. 2020. CC BY-NC-SA 3.0 IGO. Available from: https://www.who.int/publications/i/item/meeting-report-of-the-who-expert-consultation-on-the-definition-of-extensively-drug-resistant-tuberculosis

  66. Bai Y, Wang Y, Shao C, Hao Y, Jin Y. GenoType MTBDRplus assay for rapid detection of multidrug resistance in mycobacterium tuberculosis: a meta-analysis. PLoS One [Internet]. 2016;11(3):1–20. https://doi.org/10.1371/journal.pone.0150321.

    Article  CAS  Google Scholar 

  67. Tomasicchio M, Theron G, Pietersen E, Streicher E, Stanley-Josephs D, Van Helden P, et al. The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates. Sci Rep. 2016;6(November 2015):1–8.

    Google Scholar 

  68. Gardee Y, Dreyer AW, Koornhof HJ, Omar SV, Silva P, Bhyat Z. Evaluation of the GenoType MTBDRsl tuberculosis isolates in South Africa. J Clin Microbiol [Internet]. 2017;55(3):791–800. https://doi.org/10.1128/JCM.01865-16.

    Article  CAS  PubMed  Google Scholar 

  69. Willby MJ, Wijkander M, Havumaki J, Johnson K, Werngren J, Hoffner S, et al. Detection of mycobacterium tuberculosis pncA mutations by the Nipro Genoscholar PZA-TB II assay compared to conventional sequencing. Antimicrob Agents Chemother. 2018 Jan;62(1):e01871–17.

    Article  PubMed  Google Scholar 

  70. Aono A, Chikamatsu K, Yamada H, Kato T, Mitarai S. Association between pncA gene mutations, pyrazinamidase activity, and pyrazinamide susceptibility testing in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(8):4928–30.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Aono A, Chikamatsu K, Yamada H, Igarashi Y, Murase Y, Takaki A, et al. A simplified pyrazinamidase test for pyrazinamide drug susceptibility in mycobacterium tuberculosis. J Microbiol Methods [Internet]. 2018;154(October):52–4. https://doi.org/10.1016/j.mimet.2018.09.018.

    Article  CAS  PubMed  Google Scholar 

  72. O’Connor JA, O’Reilly B, Corcoran GD, O’Mahony J, Lucey B. A comparison of the HAIN Genotype CM reverse hybridisation assay with the Bruker MicroFlex LT MALDI-TOF mass spectrometer for identification of clinically relevant mycobacterial species. Br J Biomed Sci. 2020 Jul;77(3):152–5.

    Article  PubMed  Google Scholar 

  73. Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol. 1996;34(2):296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kazumi Y, Mitarai S. The evaluation of an identification algorithm for mycobacterium species using the 16S rRNA coding gene and rpoB. Int J Mycobacteriol. 2012;1(1):21–8.

    Article  PubMed  Google Scholar 

  75. Alcolea-Medina A, Fernandez MTC, Montiel N, García MPL, Sevilla CD, North N, et al. An improved simple method for the identification of mycobacteria by MALDI-TOF MS (matrix-assisted laser desorption- ionization mass spectrometry). Sci Rep. 2019;9(1):5–10.

    Article  Google Scholar 

  76. Tasaka H, Shigeto E, Matsuo K, Yamaguchi R, Haga S, Yamazaki A, et al. Secretion of MPB64 antigen by a recombinant clone of mycobacterium smegmatis: characterization and application for the diagnosis of tuberculosis. Scand J Immunol. 1995 Oct;42(4):487–92.

    Article  CAS  PubMed  Google Scholar 

  77. Chikamatsu K, Aono A, Yamada H, Sugamoto T, Kato T, Kazumi Y, et al. Comparative evaluation of three immunochromatographic identification tests for culture confirmation of mycobacterium tuberculosis complex. BMC Infect Dis. 2014;14(1):54.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hirano K, Aono A, Takahashi M, Abe C. Mutations including IS6110 insertion in the gene encoding the MPB64 protein of Capilia TB-negative mycobacterium tuberculosis isolates. J Clin Microbiol. 2004;42(1):390–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Orikiriza P, Nyehangane D, Atwine D, Kisakye JJ, Kassaza K, Amumpaire J-M, et al. Evaluation of the SD Bioline TB ag MPT64 test for identification of mycobacterium tuberculosis complex from liquid cultures in southwestern Uganda. Afr J Lab Med. 2017;6(2):1–4.

    Article  Google Scholar 

  80. Said HM, Ismail N, Osman A, Velsman C, Hoosen AA. Evaluation of TBc identification immunochromatographic assay for rapid identification of mycobacterium tuberculosis complex in samples from broth cultures. J Clin Microbiol. 2011;49(5):1939–42.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Saifi M, Jabbarzadeh E, Bahrmand AR, Karimi A, Pourazar S, Fateh A, et al. HSP65-PRA identification of non-tuberculosis mycobacteria from 4892 samples suspicious for mycobacterial infections. Clin Microbiol Infect. 2013;19(8):723–8.

    Article  CAS  PubMed  Google Scholar 

  82. Macheras E, Roux AL, Bastian S, Leão SC, Palaci M, Sivadon-Tardy V, et al. Multilocus sequence analysis and rpoB sequencing of mycobacterium abscessus (sensu lato) strains. J Clin Microbiol. 2011;49(2):491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matsumoto Y, Kinjo T, Motooka D, Nabeya D, Jung N, Uechi K, et al. Comprehensive subspecies identification of 175 nontuberculous mycobacteria species based on 7547 genomic profiles. Emerg Microbes Infect. 2019;8(1):1043–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brock I, Weldingh K, Leyten EMS, Arend SM, Ravn P, Andersen P. Specific T-cell epitopes for immunoassay-based diagnosis of mycobacterium tuberculosis infection. J Clin Microbiol. 2004;42(6):2379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu C, Zhao Z, Fan J, Lyon CJ, Wu H-J, Nedelkov D, et al. Quantification of circulating Mycobacterium tuberculosis and antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Proc Natl Acad Sci [Internet]. 2017;114(15):3969 LP–3974. Available from: http://www.pnas.org/content/114/15/3969.abstract

    Article  Google Scholar 

  86. Liu C, Lyon CJ, Bu Y, Deng Z, Walters E, Li Y, et al. Clinical evaluation of a blood assay to diagnose paucibacillary tuberculosis via bacterial antigens. Clin Chem. 2018;64(5):791–800.

    Article  PubMed  PubMed Central  Google Scholar 

  87. World Health Organization. The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV Policy guidance. 2015;(October).

    Google Scholar 

  88. Broger T, Nicol MP, Sigal GB, Gotuzzo E, Zimmer AJ, Surtie S, et al. Diagnostic accuracy of 3 urine lipoarabinomannan tuberculosis assays in HIV-negative outpatients. J Clin Invest. 2020;130(11):5756–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Broger T, Tsionksy M, Mathew A, Lowary TL, Pinter A, Plisova T, et al. Sensitive electrochemiluminescence (ECL) immunoassays for detecting lipoarabinomannan (LAM) and ESAT-6 in urine and serum from tuberculosis patients. PLoS One. 2019;14(4):1–19.

    Article  Google Scholar 

  90. Kawasaki M, Echiverri C, Raymond L, Cadena E, Reside E, Gler MT, et al. Lipoarabinomannan in sputum to detect bacterial load and treatment response in patients with pulmonary tuberculosis: analytic validation and evaluation in two cohorts. PLoS Med. 2019;16(4):e1002780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sakashita K, Takeuchi R, Takeda K, Takamori M, Ito K, Igarashi Y, et al. Ultrasensitive enzyme-linked immunosorbent assay for the detection of MPT64 secretory antigen to evaluate mycobacterium tuberculosis viability in sputum. Int J Infect Dis [Internet]. 2020;96:244–53. https://doi.org/10.1016/j.ijid.2020.04.059.

    Article  CAS  PubMed  Google Scholar 

  92. Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J. 2005;25(3):564–9.

    Article  CAS  PubMed  Google Scholar 

  93. Kam KM, Sloutsky A, Yip CW, Bulled N, Seung KJ, Zignol M, et al. Determination of critical concentrations of second-line anti-tuberculosis drugs with clinical and microbiological relevance. Int J Tuberc Lung Dis. 2010;14(3):282–8.

    CAS  PubMed  Google Scholar 

  94. Schön T, Miotto P, Köser CU, Viveiros M, Böttger E, Cambau E. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect. 2017;23(3):154–60.

    Article  PubMed  Google Scholar 

  95. World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. 2018.

    Google Scholar 

  96. Gail L. Woods. Performance standards for susceptibility testing of Mycobacteria, Nocardia spp., and other aerobic actinomycetes, 1st Edition. 2018. 36 p.

    Google Scholar 

  97. Goloubeva V, Lecocq M, Lassowsky P, Matthys F, Portaels F, Bastian I. Evaluation of mycobacteria growth indicator tube for direct and indirect drug susceptibility testing of mycobacterium tuberculosis from respiratory specimens in a Siberian prison hospital. J Clin Microbiol. 2001;39(4):1501–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Somoskovi A, Clobridge A, Larsen SC, Sinyavskiy O, Surucuoglu S, Parsons LM, et al. Does the MGIT 960 system improve the turnaround times for growth detection and susceptibility testing of the mycobacterium tuberculosis complex? J Clin Microbiol. 2006;44(6):2314–5.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Moore DAJ, Evans CAW, Gilman RH, Caviedes L, Coronel J, Vivar A, et al. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med. 2006;355(15):1539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wikman-Jorgensen P, Llenas-García J, Hobbins M, Ehmer J, Abellana R, Goncalves AQ, et al. Microscopic observation drug susceptibility assay for the diagnosis of TB and MDR-TB in HIV-infected patients: a systematic review and meta-analysis. Eur Respir J. 2014;44(4):973–84.

    Article  PubMed  Google Scholar 

  101. Moore D. MODS–a user guide Microscopic observation drug susceptibility assay. 2008;MODS user(November):30.

    Google Scholar 

  102. Mejia GI, Castrillon L, Trujillo H, Robledo JA. Microcolony detection in 7H11 thin layer culture is an alternative for rapid diagnosis of mycobacterium tuberculosis infection. Int J Tuberc Lung Dis. 1999;3(2):138–42.

    CAS  PubMed  Google Scholar 

  103. Ardizzoni E, Ariza E, Mulengwa D, Mpala Q, de La Tour R, Maphalala G, et al. Thin-layer-agar-based direct phenotypic drug susceptibility testing on Sputum in Eswatini rapidly detects mycobacterium tuberculosis growth and rifampicin resistance otherwise missed by WHO-endorsed diagnostic tests. Antimicrob Agents Chemother. 2021;65(6):e02263–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. World Health Organization. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in mycobacterium tuberculosis complex: technical guide. Geneva: WHO/CDS/TB; 2018.

    Google Scholar 

  105. Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med [Internet]. 2015;7(1):1–10.

    CAS  Google Scholar 

  106. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104(6):901–12.

    Article  CAS  PubMed  Google Scholar 

  107. Mani C, Selvakumar N, Narayanan S, Narayanan PR. Mutations in the rpoB gene of multidrug-resistant mycobacterium tuberculosis clinical isolates from India. J Clin Microbiol. 2001;39(8):2987–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Farhat MR, Sixsmith J, Calderon R, Hicks ND, Fortune SM, Murray M. Rifampicin and rifabutin resistance in 1003 mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother. 2019;74(6):1477–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Van Deun A, Aung KJM, Bola V, Lebeke R, Hossain MA, De Rijk WB, et al. Rifampin drug resistance tests for tuberculosis: challenging the gold standard. J Clin Microbiol. 2013;51(8):2633–40.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jouet A, Gaudin C, Badalato N, Allix-Béguec C, Duthoy S, Ferré A, et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J. 2021;57(3):2002338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kambli P, Ajbani K, Kazi M, Sadani M, Naik S, Shetty A, et al. Targeted next generation sequencing directly from sputum for comprehensive genetic information on drug resistant mycobacterium tuberculosis. Tuberculosis. 2021;127(January):102051.

    Article  CAS  PubMed  Google Scholar 

  112. Cabibbe AM, Spitaleri A, Battaglia S, Colman RE, Suresh A, Uplekar S, et al. Application of targeted next-generation sequencing assay on a portable sequencing platform for culture-free detection of drug-resistant tuberculosis from clinical samples. J Clin Microbiol. 2020;58(10):1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Mitarai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitarai, S. (2022). Advances in Mycobacterial Laboratories: What Is the Latest Laboratory Approach to Diagnose and Manage Pulmonary TB?. In: Saito, T., Narita, M., Daley, C.L. (eds) Pulmonary Tuberculosis and Its Prevention. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-19-3995-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3995-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3994-5

  • Online ISBN: 978-981-19-3995-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics