Skip to main content

Optimization and Analysis of Abrasive Wear of Agro-waste Fiber Reinforced Composites by RSM Design Matrix

  • Conference paper
  • First Online:
Recent Advances in Materials Technologies

Abstract

Biofibers and Agro-waste in polymer matrix materials are attracting augmented deliberation because of ecological concerns and the acknowledgment that worldwide oil assets are limited. Natural fiber-based hybrid composites were the best choice for automobile industry for interior and exterior parts, bearings, door linings, etc., since they were searching for new ecofriendly material which reduces the cost and weight. The aim of the present work is to conduct an experimental study based on the design of experiments (DOE) of abrasive wear property of Agro-waste areca husk fiber (AHF) reinforced epoxy composites by varying various parameters such as weight % of fiber (0, 7, 14, 21, 28), sliding distance (314.16, 471.24, 628.32 m) and applied load (5, 7.5, 10, 15 N) using the pin-on-disk method. The wear experiments were carried out as per full factorial design of experiment, and response surface methodology (RSM) was adopted to develop an empirical model for the true response surface. Analysis of variance (ANOVA) test is used to check the adequacy and thus estimate the optimum process parameters for the AHF composite for specific wear rate. The optimum value obtained for specific wear rate was 3.87 × 10–11 m3/Nm which when the applied load = 15 N, sliding distance = 628.32 m and the wt% of fiber reinforcement = 15.27%, respectively. FTIR was conducted to analyze the structural modifications caused by NaOH treatment of AHF fibers. Results indicate that incorporation of areca husk fibers considerably enhanced the abrasion properties of AHF composites and can be used for different tribological applications. The major wear mechanisms were revealed by worn surface profile study using SEM (ZEISS EVO-18), and it also shows that chemical surface treatment (5% NaOH) improves the adhesion between fibers and matrix which significantly influences the abrasive wear properties of fabricated composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singha NR, Mahapatra M, Karmakar M, Chattopadhyay PK (2019) Processing, characterization and application of natural rubber based environmentally friendly polymer composites. https://doi.org/10.1007/978-3-030-05399-4_29

  2. Kim YK, Chalivendra V (2020) Natural fibre composites (NFCs) for construction and automotive industries. Elsevier. https://doi.org/10.1016/b978-0-12-818782-1.00014-6

  3. Keya KN, Kona NA, Koly FA, Maraz KM, Islam MN, Khan RA (2019) Natural fiber reinforced polymer composites: history, types, advantages, and applications. Mater Eng Res 1:69–87

    Google Scholar 

  4. Raj SSR, Dhas JER, Jesuthanam CP (2020) Challenges on machining characteristics of natural fiber-reinforced composites—a review. J Reinf Plast Compos. https://doi.org/10.1177/0731684420940773

    Article  Google Scholar 

  5. Adekomaya O, Jamiru T, Sadiku R, Huan Z (2016) A review on the sustainability of natural fiber in matrix reinforcement—a practical perspective. J Reinf Plast Compos 35:3–7. https://doi.org/10.1177/0731684415611974

    Article  CAS  Google Scholar 

  6. Hasan KMF, Horváth PG, Alpár T (2020) Potential natural fiber polymeric nanobiocomposites: a review. Polymers (Basel) 12. https://doi.org/10.3390/POLYM12051072

  7. Neves ACC, Rohen LA, Mantovani DP, Carvalho JPRG, Vieira CMF, Lopes FPD et al (2019) Comparative mechanical properties between biocomposites of epoxy and polyester matrices reinforced by hemp fiber. J Mater Res Technol 9:1296–1304. https://doi.org/10.1016/j.jmrt.2019.11.056

    Article  CAS  Google Scholar 

  8. Kumar R, Ul Haq MI, Raina A, Anand A (2019) Industrial applications of natural fibre-reinforced polymer composites–challenges and opportunities. Int J Sustain Eng 12:212–220. https://doi.org/10.1080/19397038.2018.1538267

    Article  Google Scholar 

  9. Lucintel (2015) Growth opportunities in the global natural fiber composites market

    Google Scholar 

  10. Mellinas C, Ramos M, Jiménez A, Garrigós MC (2020) Recent trends in the use of pectin from Agro-waste residues as a natural-based biopolymer for food packaging applications. Materials (Basel) 13. https://doi.org/10.3390/ma13030673

  11. Chand N, Sharma P, Fahim M (2010) Tribology of maleic anhydride modified rice-husk filled polyvinylchloride. Wear 269:847–853. https://doi.org/10.1016/j.wear.2010.08.014

    Article  CAS  Google Scholar 

  12. Diacono M, Persiani A, Testani E, Montemurro F, Ciaccia C (2019) Recycling agricultural wastes and by-products in organic farming: biofertilizer production, yield performance and carbon footprint analysis. Sustain 11:1–17. https://doi.org/10.3390/su11143824

    Article  CAS  Google Scholar 

  13. Dungani R, Karina M, Subyakto, Sulaeman A, Hermawan D, Hadiyane A (2016) Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian J Plant Sci 15:42–55. https://doi.org/10.3923/ajps.2016.42.55

  14. Prithivirajan R, Jayabal S, Bharathiraja G (2015) Bio-based composites from waste agricultural residues: mechanical and morphological properties. Cellul Chem Technol 49:65–68

    CAS  Google Scholar 

  15. Akampumuza O, Wambua PM, Ahmed A, Li W, Qin XH (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38:2553–2569. https://doi.org/10.1002/pc.23847

    Article  CAS  Google Scholar 

  16. Gao M, Shih CC, Pan SY, Chueh CC, Chen WC (2018) Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery. J Mater Chem A 6:20546–20563. https://doi.org/10.1039/C8TA07246A

    Article  CAS  Google Scholar 

  17. Verma D, Fortunati E (2019) Biopolymer processing and its composites: an introduction. Elsevier. https://doi.org/10.1016/B978-0-08-102426-3.00001-1

  18. Ibrahem RA (2015) Effect of date palm seeds on the tribological behaviour of polyester composites under different testing conditions. J Mater Sci Eng 04. https://doi.org/10.4172/2169-0022.1000206

  19. Vishal K, Rajkumar K, Annamalai VE (2021) Wear and tribofilm characterization of bamboo CNT (B-CNT)-peek composite with incremental blending of submicron synthetic diamond particles. Wear 466–467:203556. https://doi.org/10.1016/j.wear.2020.203556

    Article  CAS  Google Scholar 

  20. Binoj JS, Raj RE, Hassan SA, Mariatti M, Siengchin S, Sanjay MR (2020) Characterization of discarded fruit waste as substitute for harmful synthetic fiber-reinforced polymer composites. J Mater Sci 55:8513–8525. https://doi.org/10.1007/s10853-020-04620-8

    Article  CAS  Google Scholar 

  21. Dhanalakshmi S, Ramadevi P, Basavaraju B (2015) Areca fiber reinforced epoxy composites: effect of chemical treatments on impact strength. Orient J Chem 31:763–769. https://doi.org/10.13005/ojc/310218

  22. Das P (2019) Underutilized Meghalyan arecanut husk waste fiber for development of nonwoven textile material. Int J Pure Appl Biosci 7:563–567. https://doi.org/10.18782/2320-7051.7580

  23. Ganeshamurthy A, Kalaivanan D, Rupa T, Manjunath B (2019) An assessment of the fertilizer needs of horticultural crops in India. Indian J Fertil 15:286–295

    Google Scholar 

  24. Raj SS (2019) Optimization of fabrication parameters on hybrid fibre reinforced polymer composite by ANN design. Innov Power Adv Comput Technol 2019:1–4. https://doi.org/10.1109/i-PACT44901.2019.8960244

    Article  Google Scholar 

  25. Kumar NGS, Prabhu TR, Mishra RK, Eswaraprasad N, Shankar GSS, Basavarajappa S (2018) Analysis of dry sliding wear behavior of the nano composites using statistical methods with an emphasis on temperature effects. Meas J Int Meas Confed 128:362–376. https://doi.org/10.1016/j.measurement.2018.06.064

    Article  Google Scholar 

  26. Yin Z, Peng Y, Li T, Zhu Z, Yu Z, Wu G (2020) Effect of the operating parameter and grinding media on the wear properties of lifter in ball mills. Proc Inst Mech Eng Part J J Eng Tribol 234:1061–1074. https://doi.org/10.1177/1350650119894492

    Article  Google Scholar 

  27. Sajeeb Rahiman AH, Robinson Smart DS, Wilson B, Ebrahim I, Eldhose B, Mathew B, Murickan RT (2020) Dry sliding wear analysis OF Al5083/CNT/Ni/MoB hybrid composite using DOE Taguchi method. Wear, 460–461

    Google Scholar 

  28. Myers RH, Montgomery DC, Geoffrey Vining G, Borror CM, Kowalski SM (2004) Response surface methodology: a retrospective and literature survey. J Qual Technol 36:53–78. https://doi.org/10.1080/00224065.2004.11980252

    Article  Google Scholar 

  29. Chelladurai SJS, Murugan K, Ray AP, Upadhyaya M, Narasimharaj V, Gnanasekaran S (2020) Optimization of process parameters using response surface methodology: a review. Mater Today Proc 37:1301–1304. https://doi.org/10.1016/j.matpr.2020.06.466

    Article  Google Scholar 

  30. Kamath SS, Sampathkumar D, Bennehalli B (2017) A review on natural areca fibre reinforced polymer composite materials. Cienc e Tecnol Dos Mater 29:106–128. https://doi.org/10.1016/j.ctmat.2017.10.001

    Article  Google Scholar 

  31. Ba D, Boyaci IH (2007) Modeling and optimization i: usability of response surface methodology. J Food Eng 78:836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024

    Article  CAS  Google Scholar 

  32. Weissman SA, Anderson NG (2015) Design of experiments (DoE) and process optimization. A review of recent publications. Org Process Res Dev 19:1605–1633. https://doi.org/10.1021/op500169m

  33. Enis IY, Sezgin H, Sadikoglu TG (2018) Full factorial experimental design for mechanical properties of electrospun vascular grafts. J Ind Text 47:1378–1391. https://doi.org/10.1177/1528083717690614

    Article  Google Scholar 

  34. Saravanan V, Thyla PR, Balakrishnan SR (2015) Optimization of wear behavior on cenosphere -aluminium composite. Korean J Mater Res 25:322–329. https://doi.org/10.3740/MRSK.2015.25.7.322

    Article  CAS  Google Scholar 

  35. Morshed MN, Pervez MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA (2020) Statistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: a full factorial design. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-72401-z

    Article  CAS  Google Scholar 

  36. Piepho HP, Edmondson RN (2018) A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels. J Agron Crop Sci 204:429–455. https://doi.org/10.1111/jac.12267

    Article  Google Scholar 

  37. Faraway JJ (2002) Practical regression and Anova using R

    Google Scholar 

  38. Salguero J, Vazquez-Martinez JM, Del Sol I, Batista M (2018) Application of Pin-On-Disc techniques for the study of tribological interferences in the dry machining of A92024–T3 (Al-Cu) alloys. Materials (Basel) 11:1–11. https://doi.org/10.3390/ma11071236

    Article  CAS  Google Scholar 

  39. Dey A, Mandal S, Bhandari S, Pal C, Orasugh JT, Chattopadhyay D (2020) Characterization methods. In: Fiber-reinforced nanocomposites fundamentals and applications. Micro and nano technologies. Elsevier, Amsterdam, Netherlands, pp 7–67

    Google Scholar 

  40. Kumar S, Mer KKS, Gangil B, Patel VK (2019) Synergy of rice-husk filler on physico-mechanical and tribological properties of hybrid Bauhinia-vahlii/sisal fiber reinforced epoxy composites. J Mater Res Technol 8:2070–2082. https://doi.org/10.1016/j.jmrt.2018.12.021

    Article  CAS  Google Scholar 

  41. Emerson RW (2017) ANOVA and t-tests. J Vis Impair Blind 111:193–196. https://doi.org/10.1177/0145482x1711100214

    Article  Google Scholar 

  42. Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis. Wiley, Hoboken, NJ

    Google Scholar 

  43. Larsen WA, McCleary SJ (1972) The use of partial residual plots in regression analysis. Technometrics 14:781–790. https://doi.org/10.1080/00401706.1972.10488966

    Article  Google Scholar 

  44. Gohil P, Patel K, Chaudhary V (2019) Natural fiber-reinforced polymer composites: a comprehensive study on machining characteristics of hemp fiber-reinforced composites. Elsevier. https://doi.org/10.1016/B978-0-08-102426-3.00002-3

  45. Antony J. A Systematic Methodology for Design of Experiments. Second Edi. Elsevier Ltd; 2014. https://doi.org/10.1016/b978-0-08-099417-8.00004-3.

  46. Chandramohan D, Ravikumar L, Sivakandhan C, Murali G, Senthilathiban A (2018) Review on tribological performance of natural fibre-reinforced polymer composites. J Bio-Tribo-Corrosion 4. https://doi.org/10.1007/s40735-018-0172-x

  47. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Saravanakumar SS, Yogesha B (2019) A review on synthesis and characterization of commercially available natural fibers: Part II. J Nat Fibers 16:25–36. https://doi.org/10.1080/15440478.2017.1379045

    Article  Google Scholar 

  48. Ng HM, Saidi NM, Omar FS, Ramesh K, Ramesh S, Bashir S (2018) Thermogravimetric analysis of polymers. Encycl Polym Sci Technol, 1–29. https://doi.org/10.1002/0471440264.pst667

  49. Sumithra H, Sidda RB (2018) A review on tribological behaviour of natural reinforced composites. J Reinf Plast Compos 37:349–353. https://doi.org/10.1177/0731684417747742

    Article  CAS  Google Scholar 

  50. Latif R, Wakeel S, Khan NZ, Noor Siddiquee A, Lal Verma S, Akhtar KZ (2019) Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos 38:15–30. https://doi.org/10.1177/0731684418802022

    Article  CAS  Google Scholar 

  51. Ashok RB, Srinivasa CV, Basavaraju B (2018) A review on the mechanical properties of areca fiber reinforced composites. Sci Technol Mater. https://doi.org/10.1016/j.stmat.2018.05.004

    Article  Google Scholar 

  52. Dhanalakshmi S, Ramadevi P, Basavaraju B (2017) A study of the effect of chemical treatments on areca fiber reinforced polypropylene composite properties. Sci Eng Compos Mater 24:501–520. https://doi.org/10.1515/secm-2015-0292

    Article  CAS  Google Scholar 

  53. Sankar I, Ravindran D (2016) Fiber loading and treatment effects on dry sliding wear of Palmyra fruit fiber composites. Sci Eng Compos Mater 23:217–226. https://doi.org/10.1515/secm-2014-0101

    Article  Google Scholar 

  54. Rajeshkumar G (2020) Effect of sodium hydroxide treatment on dry sliding wear behavior of Phoenix sp. fiber reinforced polymer composites. J Ind Text. https://doi.org/10.1177/1528083720918948

  55. Vigneshwaran S, Uthayakumar M, Arumugaprabu V, Deepak Joel Johnson R (2018) Influence of filler on erosion behavior of polymer composites: a comprehensive review. J Reinf Plast Compos 37:1011–1119. https://doi.org/10.1177/0731684418777111

  56. Suresh S, Sudhakara D, Vinod B (2020) Investigation on Industrial waste eco-friendly natural fiber-reinforced polymer composites. J Bio-Tribo-Corrosion 6:1–14. https://doi.org/10.1007/s40735-020-00339-w

    Article  Google Scholar 

  57. Ahmed A (1989) Polymer tribology, vol C29. https://doi.org/10.1533/9781782421788.1

  58. Correa CE, Betancourt S, Vázquez A, Gañan P (2015) Wear resistance and friction behavior of thermoset matrix reinforced with Musaceae fiber bundles. Tribol Int 87:57–64. https://doi.org/10.1016/j.triboint.2015.02.015

    Article  CAS  Google Scholar 

  59. Yousif BF, Nirmal U, Wong KJ (2010) Three-body abrasion on wear and frictional performance of treated betelnut fibre reinforced epoxy (T-BFRE) composite. Mater Des 31:4514–4521. https://doi.org/10.1016/j.matdes.2010.04.008

    Article  CAS  Google Scholar 

  60. Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16:101–113

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia S. Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raj, S.S., Edwin Raja Dhas, J., Harish Kumar, B. (2023). Optimization and Analysis of Abrasive Wear of Agro-waste Fiber Reinforced Composites by RSM Design Matrix. In: Rajkumar, K., Jayamani, E., Ramkumar, P. (eds) Recent Advances in Materials Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-3895-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3895-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3894-8

  • Online ISBN: 978-981-19-3895-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics