Skip to main content

The Cellulosome: A Fiber-Degrading Strategist of the Rumen Microbiome

  • Chapter
  • First Online:
Understanding the Microbiome Interactions in Agriculture and the Environment

Abstract

Microbes in the rumen of herbivores are responsible for effective plant biomass decomposition and digestion. Recent efforts to transform cellulosic biomass into biofuels have heightened interest in the bacterial fibrinolytic processes used by these bacteria. In ecology, plant cell wall material is used to transmit energy between the host and parasitic organisms. Herbivores eat plant material and digest it via symbiotic stomach microbiota (protozoa, fungi, and bacteria). Much anaerobic lignocellulose and hemicellulose-digesting bacteria populate the rumen. Cellulosome is a plant cell wall destroying bacteria’s strategic arsenal. Raphael Lamed identified this complex protein in 1983 in an extremophile Clostridium thermocellum. The cellulosome complex and its actions were also being studied as “Swiss knife” shape and protein complex, the cellulosome protein complex (carbohydrate-binding modules (CBM), cohesin, dockerin, enzymes, and scaffoldings. Scientists discovered these compounds in rumen microbes. A constant study has helped us learn more about rumen bacteria and how their cellulosomes break down plant cell walls. The rumen community depends on cellulolytic Ruminococcus spp. Cohesin-dockerin molecules combine to form cellulosome complexes. Designer cellulosomes are chimeric-tailored cellulosomes that function in a cell-free system. They improve the hydrolysis of cellulosic substrates to create value-added products. For this purpose, recombinant constructions and artificial self-assembling chimeric proteins are produced. The capacity of rumen microbes to digest refractory cellulose is of great industrial importance, and metagenomics research is helping to understand and determine the quantities and kinds of cellulolytic bacteria found in the bovine rumen complex ecosystem. This chapter explains the cellulosomal machinery’s extensive function in lignocellulose-degrading bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann RJ, Binder BL, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA targeted oligonucleotide probes with flow-cemetry for analysing mixed microbial populations. Appl Environ Microbiol 56:1910–1925

    Article  Google Scholar 

  • Anderson KL, Blair BG (1996) Regulation of the cellulolytic activity of Eubacterium cellulosolvens 5494: a review. SAAS Bull Biochem Biotechnol 9:57–62

    CAS  PubMed  Google Scholar 

  • Angly F et al (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aschenbach JR, Penner GB, Stumpff F, Gäbel G (2011) Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. J Anim Sci 89:1092–1107

    Article  CAS  PubMed  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    Article  CAS  PubMed  Google Scholar 

  • Attwood GT, Blaschek HP, White BA (1994) Transcriptional analysis of the Clostridium cellulovorans endoglucanase gene, engB. FEMS Microbiol Lett 124:277–284

    Article  CAS  PubMed  Google Scholar 

  • Aurilia V, Martin JC, McCrae SI, Scott KP, Rincon MT, Flint HJ (2000) Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 146:1391–1397

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer EA, Morag E, Lamed R (1994) The cellulosome—a treasure trove for biotechnology. Trends Biotechnol 12:379–386

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2013) Lignocellulose-decomposing bacteria and their enzyme systems. In: The prokaryotes. Springer, New York, NY, pp 215–266

    Chapter  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  CAS  PubMed  Google Scholar 

  • Beguin P, Lemaire M (1996) The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol 31:201–236

    Article  CAS  PubMed  Google Scholar 

  • Berger E, Jones WA, Jones DT, Woods DR (1990) Sequencing and expression of a cellodextrinase (ced1) gene from Butyrivibrio fibrisolvens H17c cloned in Escherichia coli. Mol Gen Genet 223:310–318

    Article  CAS  PubMed  Google Scholar 

  • Bernalier A, Fonty G, Bonnemoy F, Gouet P (1992) Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria. Curr Microbiol 25:143–148

    Article  CAS  Google Scholar 

  • Blair BG, Anderson KL (1999) Regulation of cellulose inducible structures of Clostridium cellulovorans. Can J Microbiol 45:242–249

    Article  CAS  PubMed  Google Scholar 

  • Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57:2337–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Rohwer F (2005) Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. BioTechniques 39:729–736

    Article  CAS  PubMed  Google Scholar 

  • Breitbart M et al (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 99:14250–14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart M et al (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brulc JM, Antonopoulos DA, Berg Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Proc Natl Acad Sci U S A 106(6):1948–1953. https://doi.org/10.1073/pnas.0806191105)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canganella F, Wiegel J (1993) The potential of thermophilic clostridia in biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Boston, MA, pp 393–429

    Google Scholar 

  • Carreira LH, Ljungdahl LG (1993) Production of ethanol from biomass using anaerobic thermophilic bacteria. In: Wise DL (ed) Liquid fuel developments. CRC Press, Boca Raton, FL, pp 1–28

    Google Scholar 

  • Cavedon K, Leschine SB, Canale-Parola E (1990) Cellulase system of a free-living, mesophilic Clostridium (strain C7). J Bacteriol 172:4222–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlan MP, Hon-Nami K, Hon-Nami H, Ljungdahl LG, Paulin JJ, Rigsby WE (1985) The cellulolytic enzyme complex of Clostridium thermocellum is very large. Biochem Biophys Res Commun 3:904–909

    Article  Google Scholar 

  • Dassa B, Borovok I, Ruimy-Israeli V, Lamed R, Flint HJ, Duncan SH et al (2014) Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 9:e99221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1):124. https://doi.org/10.1128/MMBR.69.1.124-154.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denman SE, Nicholson MJ, Brookman JL, Theodorou MK, McSweeney CS (2008) Detection and monitoring of anaerobic rumen fungi using an ARISA method. Lett Appl Microbiol 47:492–499

    Article  CAS  PubMed  Google Scholar 

  • Devillard E, Newbold CJ, Scott KP, Forano E, Wallace RJ, Jouany J-P, Flint HJ (1999) A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram-positive bacteria. FEMS Microbiol Lett 181:6720–6729

    Article  Google Scholar 

  • Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R (1999) A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J Bacteriol 181(21):6720–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R (2000) A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol 182(17):4915–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SY, Rincon MT, Lamed R, Martin JC, McCrae SI, Aurilia V, Shoham Y, Bayer EA, Flint HJ (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183(6):1945–1953. https://doi.org/10.1128/JB.183.6.1945-1953.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi HR, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551. https://doi.org/10.1038/nrmicro925

    Article  CAS  PubMed  Google Scholar 

  • Duong CTV, Johnson EA, Demain AL (1983) Thermophilic, anaerobic and cellulolytic bacteria. Enzyme Ferm Biotechnol 7:156–195

    CAS  Google Scholar 

  • Edwards RA et al (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felix CR, Ljungdahl LG (1993) The cellulosome: the extracellular organelle of Clostridium. Annu Rev Microbiol 47:791–819

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123

    CAS  PubMed  Google Scholar 

  • Fields MW, Mallik S, Russell JB (2000) Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl Microbiol Biotechnol 54:570–574

    Article  CAS  PubMed  Google Scholar 

  • Fierer N et al (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of Bacteria, Archaea, Fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firkins JL, Yu Z, Morrison M (2007) Ruminal nitrogen me[1]tabolism: perspectives for integration of microbiology and nutrition for dairy. J Dairy Sci 90(E. Suppl):E1–E16. https://doi.org/10.3168/jds.2006-518

    Article  PubMed  Google Scholar 

  • Flint HJ (1997) The rumen microbial ecosystem—some recent developments. Trends Microbiol 5:483–488

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ (2008) Cellulase systems of anaerobic microorganisms from the rumen and large intestine. In: Biomass recalcitrance. Blackwell Publishing Ltd., Oxford, pp 393–406

    Chapter  Google Scholar 

  • Flint HJ, Forsberg CW (1995) Polysaccharide degradation in the rumen: biochemistry and genetics. In: Engelhardt WV, Leonard-Marek S, Breves G, Giesecke D (eds) Ruminant physiology, digestion, metabolism, growth and reproduction. Proceedings of the Eighth International Symposium on Ruminant Physiology. Ferdinand Enke Verlag, Stuttgart, pp 43–70

    Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  PubMed  Google Scholar 

  • Fondevila M, Dehority BA (2001) In vitro growth and starch digestion by Entodinium exiguum as influenced by the presence or absence of live bacteria. J Anim Sci 79:2465–2471

    Article  CAS  PubMed  Google Scholar 

  • Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681. https://doi.org/10.1146/annurev-biochem-091208-085603

    Article  CAS  PubMed  Google Scholar 

  • Gal L, Page’s S, Gaudin C, Bélaïch A, Reverbel-Leroy C, Tardif C, Bélaïch J-P (1997) Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 63:903–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrity GM (ed) (2001) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Garrity GM, Winters M, Kuo AW, Searles DB (2001) Taxonomic outline of the procaryotes. Release 1.0. Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, NY, p 320

    Google Scholar 

  • Gharechahi J, Salekdeh GH (2018) A metagenomic analysis of the camel rumen’s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol Biofuels 11:216. https://doi.org/10.1186/s13068-018-1214-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63(6):1568–1576. https://doi.org/10.1111/j.1365-2958.2007.05640.x

    Article  CAS  PubMed  Google Scholar 

  • Gilmore SP, Henske JK, O’Malley MA (2015) Driving biomass breakdown through engineered cellulosomes. Bioengineered 6(4):204–208. https://doi.org/10.1080/21655979.2015.1060379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenet E, Breton A, Barry P, Fonty G (1989) Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Anim Feed Sci Technol 26:55–70

    Article  Google Scholar 

  • Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, Bayer EA (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979

    Article  CAS  PubMed  Google Scholar 

  • Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O’Malley MA (2014) Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 111:1471–1482

    Article  CAS  PubMed  Google Scholar 

  • Haitjema CH et al (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:17087

    Article  CAS  PubMed  Google Scholar 

  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henske JK, Gilmore SP, Knop D, Cunningham FJ, Sexton JA, Smallwood CR et al (2017) Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lingo-cellulolytic anaerobic fungus. Biotechnol Biofuels 10:305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Science 331(6016):463–467. https://doi.org/10.1126/science.1200387

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME (2008) Biomass recalcitrance – deconstructing the plant cell wall for bioenergy. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Hook SE, Steele MA, Northwood KS, Dijkstra J, France J, Wright ADG et al (2011) Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows. FEMS Microbiol Ecol 78:275–284. https://doi.org/10.1111/j.1574-6941.2011.01154.x

    Article  CAS  PubMed  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic Press, New York, NY

    Google Scholar 

  • Jami E, Mizrahi I (2012) Similarity of the ruminal bacteria across individual lactating cows. Anaerobe 18:338–343

    Article  CAS  PubMed  Google Scholar 

  • Jindou S, Borovok I, Rincon MT, Flint HJ, Antonopoulos DA, Berg ME et al (2006) Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol 188:7971–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly WJ, Asmundson RV, Hopcroft DH (1987) Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch Microbiol 147:169–173

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Martin JC, Daniel AS, Flint HJ (1997) Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett 149(2):213–219

    Article  CAS  PubMed  Google Scholar 

  • Krause KM, Oetzel GR (2006) Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Anim Feed Sci Technol 126:215–236

    Article  CAS  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156(2):828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed R, Kenig R, Setter E, Bayer EA (1985) Major characteristic of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzym Microb Technol 7:37–41

    Article  CAS  Google Scholar 

  • Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169(8):3792–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed R, Morag E, Moryosef O, Bayer EA (1991) Cellulosome-like entities in Bacteroides cellulosolvens. Curr Microbiol 22:27–34

    Article  CAS  Google Scholar 

  • Leibovitz E, Béguin P (1996) A new type of cohesin domain that specifically binds the dockerin domain of the clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 178(11):3077–3084. https://doi.org/10.1128/jb.178.11.3077-3084.1996. Erratum in: J Bacteriol 1996 Sep;178(17):5335. PMID: 8655483; PMCID: PMC178055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibovitz E, Ohayon H, Gounon P, Béguin P (1997) Characterization and subcellular localization of the clostridium thermocellum scaffoldin dockerin binding protein SdbA. J Bacteriol 179(8):2519–2523. https://doi.org/10.1128/jb.179.8.2519-2523.1997. PMID: 9098047; PMCID: PMC178998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaire M, Ohayon H, Gounon P, Fujino T, Beguin P (1995) OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol 177:2451–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20:191–213

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its use. Ann N Y Acad Sci 1125:308–321

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. In: Marshall KC (ed) Advances in microbial ecology, vol 8. Plenum, New York, NY, pp 237–299

    Chapter  Google Scholar 

  • Lodemann U, Martens H (2006) Effects of diet and osmotic pressure on Na+ transport and tissue conductance of sheep isolated rumen epithelium. Exp Physiol 91:539–550

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR (1989) Production of ethanol from lignocellulosic material using thermophilic bacteria: critical evaluation of potential and review. Adv Biochem Eng Biotechnol 38:1–52

    CAS  Google Scholar 

  • Lynd LR (1990) Large-scale fuel ethanol from lignocellulose. Potential, economics, and research priorities. Appl Biochem Biotechnol 24(25):695–719

    Article  Google Scholar 

  • Lynd LR, Zhang Y (2002) Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol Bioeng 77:467–475

    Article  CAS  PubMed  Google Scholar 

  • Lytle B, Myers C, Kruus K, Wu JH (1996) Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein CipA. J Bacteriol 178:1200–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie AK, Naas AE, Kracun SK, Schückel J, Fangel JU, Agger JW et al (2015) A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility. Appl Environ Microbiol 81:187–195

    Article  CAS  PubMed  Google Scholar 

  • McAllister TA, Rode LM, Major DJ, Cheng KJ, Buchanan-Smith JG (1990) Effect of ruminal microbial colonization on cereal grain digestion. Can J Anim Sci 70:571–579

    Article  Google Scholar 

  • McBee RH (1948) The culture and physiology of a thermophilic cellulose fermenting bacterium. J Bacteriol 56:653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBee RH (1950) The anaerobic thermophilic cellulolytic bacteria. Bacteriol Rev 14:51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Antonopoulos DA, Rincon MT, Band M, Bari A, Akraiko T et al (2009) Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. PLoS One 4:e6650–e6650

    Article  CAS  Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 110(36):14592–14597. https://doi.org/10.1073/pnas.1218447110. PMID: 23959872; PMCID: PMC3767521

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizrahi I (2013) Rumen symbioses. In: The prokaryotes. Springer, Berlin, pp 533–544

    Chapter  Google Scholar 

  • Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R et al (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 1(5):e00285–e00210. https://doi.org/10.1128/mBio.00285-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naas AE, Mackenzie AK, Mravec J, Schückel J, Willats WGT, Eijsink VGH et al (2014) Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? MBio 5:e01401–e01414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam IS, Garnsworthy PC (2007) Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J Appl Microbiol 103:551–556

    Article  CAS  PubMed  Google Scholar 

  • Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2000a) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64:254–260

    Article  CAS  PubMed  Google Scholar 

  • Ohara H, Noguchi J, Karita S, Kimura T, Sakka K, Ohmiya K (2000b) Sequence of egV and properties of EgV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci Biotechnol Biochem 64:80–88

    Article  CAS  PubMed  Google Scholar 

  • Ohmiya K, Sakka K, Kimura T, Morimoto K (2003) Application of microbial genes to recalcitrant biomass utilization and environmental conversation. J Biosci Bioeng 95:549–551

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG (1975) Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262. https://doi.org/10.1099/00221287-91-2-249]

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG (1994) Anaerobic fungi: taxonomy, biology, and distribution in nature. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi: biology, ecology, and function. Marcel Dekker, Inc, New York, NY, pp 1–45

    Google Scholar 

  • Ozutsumi Y, Tajima K, Takenaka A, Itabashi H (2005) The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Biosci Biotechnol Biochem 69:499–506

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Jakober K, McAllister T (2010) Rumen microbiology. In: Animal and plant productivity. Encyclopedia of Life Support Systems, Oxford, pp 161–176

    Google Scholar 

  • Raghothama S, Eberhardt RY, Simpson P, Wigelsworth D, White P, Hazlewood GP, Nagy T, Gilbert HJ, Williamson MP (2001) Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat Struct Biol 8:775–778

    Article  CAS  PubMed  Google Scholar 

  • Ransom-Jones E, Jones DL, Edwards A, McDonald JE (2014) Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Syst Appl Microbiol 37:502–509

    Article  CAS  PubMed  Google Scholar 

  • Reddy YHK, Srijana M, Harikrishna N, Reddy DM, Reddy G (2010a) Ethanol tolerant anaerobic cellulolytic ethanologenic bacteria isolated from decomposed paper. Curr Trends Biotechnol Pharm 4(4):947–956. ISSN 0973-8916

    CAS  Google Scholar 

  • Reddy YHK, Srijana M, Reddy DM, Reddy G (2010b) Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol 9(13):1926–1934

    Article  Google Scholar 

  • Rincón MT, Martin JC, Aurilia V, McCrae SI, Rucklidge GJ, Reid MD et al (2004) ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J Bacteriol 186:2576–2585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rincon MT, Cepeljnik T, Martin JC, Lamed R, Barak Y, Bayer EA, Flint HJ (2005) Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J Bacteriol 187:7569–7578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson LM, Chambliss GH (1989) Cellulases of bacterial origin. Enzym Microb Technol 11:626–644

    Article  CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212. https://doi.org/10.1038/nature08060

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6:78. https://doi.org/10.1186/s40168-018-0457-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell JB, Sharp WM, Baldwin RL (1979) The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. J Anim Sci 48:251–255

    Article  CAS  PubMed  Google Scholar 

  • Salamitou S, Lemaire M, Fujino T, Ohayon H, Gounon P, Béguin P, Aubert J-P (1994a) Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. J Bacteriol 176:2828–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamitou S, Raynaud O, Lemaire M, Coughlan M, Béguin P, Aubert J-P (1994b) Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J Bacteriol 176:2822–2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellhorn HE, Forsberg CW (1984) Multiplicity of extracellular β-(1,4)-endoglucanases of Bacteroides succinogenes S85. Can J Microbiol 30:930–937

    Article  CAS  Google Scholar 

  • Schwarz WH, Bronnenmeier K, Landmann B, Wanner G, Staudenbauer WL, Kurose N, Takayama T (1995) Molecular characterization of four strains of the cellulolytic thermophile clostridium stercorarium. Biosci Biotechnol Biochem 59:1661–1665

    Article  CAS  Google Scholar 

  • Selinger LB, Forsberg CW, Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2:263–284

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Karita S, Sakka K, Ohmiya K (1994) Cellulases, xylanases, and their genes from bacteria. Bioprocess Technol 19:395–429

    CAS  PubMed  Google Scholar 

  • Shoseyov O, Levy I, Shani Z, Mansfield SD (2003) Modulation of wood fibers and paper by cellulose binding domains. In: Mansfield SD, Saddler JN (eds) Applications of enzymes to lignocellulosics. American Chemical Society, Washington, DC, pp 116–131

    Chapter  Google Scholar 

  • Steenbakkers PJM et al (2003) Beta-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem J 370:963–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenbakkers PJM, Irving JA, Harhangi HR, Swinkels WJC, Akhmanova A, Dijkerman R, Jetten MSM, van der Drift C, Whisstock JC, Op den Camp HJM (2008) A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycol Res 112:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Stutzenberger F (1990) Bacterial cellulases. In: Fogarty WM, Kelly CT (eds) Microbial enzymes and biotechnology. Elsevier Applied Science, London, pp 37–70

    Chapter  Google Scholar 

  • Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J et al (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 6:e18814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama J, Suh S-O (2011) Chapter 158 - Sympodiomycopsis Sugiyama, Tokuoka & Komagata (1991). In: The yeasts, 5th edn, pp 1995–1997

    Chapter  Google Scholar 

  • Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL (2000) A gene encoding a novel multidomain beta-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 66:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tharwat M, Al-Sobayil F, Ali A, Buczinski S (2012) Transabdominal ultrasonographic appearance of the gastrointestinal viscera of healthy camels (Camelus dromedaries). Res Vet Sci 93:1015–1020

    Article  PubMed  Google Scholar 

  • Tokatlidis K, Salamitou S, Beguin P, Dhurjati P, Aubcrt JP (1991) Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FERS Lett 291:185–188

    CAS  Google Scholar 

  • Tokatlidis K, Dhurjati P, Beguin P (1993) Properties conferred on Closlridium thermoocellum endoglucanase CclC by grafting the duplicated segment of endoglucanasc CclD. Prot Eng 6:947–952

    Article  CAS  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela-Ortega M, French CE (2019) Engineering of industrially important microorganisms for assimilation of cellulosic biomass: towards consolidated bioprocessing. Biochem Soc Trans 47(6):1781–1794. https://doi.org/10.1042/BST20190293. PMID: 31845725

    Article  CAS  PubMed  Google Scholar 

  • Viljoen JA, Fred EB, Peterson WH (1926) The fermentation of cellulose by thermophilic bacteria. J Agric Sci 16(1):1–17

    Article  CAS  Google Scholar 

  • Wahrmund JL, Ronchesel JR, Krehbiel CR, Goad CL, Trost SM, Richards CJ (2012) Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. J Anim Sci 90:2794–2801

    Article  CAS  PubMed  Google Scholar 

  • Warren RAJ (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    Article  CAS  PubMed  Google Scholar 

  • Wegley L, Breitbart M, Edwards RA, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Williams AG, Orpin CG (1987) Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. Can J Microbiol 33:418–426

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2009) Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 16:723–727

    Article  CAS  Google Scholar 

  • Xu Q et al (2003) The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 185:4548–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q et al (2004) Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J Bacteriol 186:968–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yáñez-Ruiz DR, Moumen A, Martín García AI, Alcaide EM (2004) Ruminal fermentation and degradation patterns, protozoa population, and urinary purine derivatives excretion in goats and wethers fed diets based on two-stage olive cake: effect of PEG supply. J Anim Sci 82:2023–2032

    Article  PubMed  Google Scholar 

  • Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y (1995) Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 360:121–124

    Article  CAS  PubMed  Google Scholar 

  • Youssef NH et al (2013) The genome of the anaerobic fungus Orpinomyces sp. Strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79:4620–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686. https://doi.org/10.1073/pnas.252630999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zverlov VV, Schwarz WH (2006) The C. thermocellum Cellulosome: novel components and insights from the genomic sequence. In: Uversky V, Kataeva IA (eds) Cellulosome. Nova Science Publishers, Inc, New York, NY, pp 119–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukkala, S., Bramhachari, P.V., Reddy, Y.H.K. (2022). The Cellulosome: A Fiber-Degrading Strategist of the Rumen Microbiome. In: Veera Bramhachari, P. (eds) Understanding the Microbiome Interactions in Agriculture and the Environment. Springer, Singapore. https://doi.org/10.1007/978-981-19-3696-8_11

Download citation

Publish with us

Policies and ethics