Skip to main content

Rumen Symbioses

  • Reference work entry
The Prokaryotes

Abstract

Ruminants hold enormous significance for man as a source of milk and meat. Their remarkable ability to convert indigestible plant mass into these digestible food products is the outcome of a symbiosis that resides in the reticulorumen—an anaerobic double-chambered compartment in the ruminant digestive system. The reticulorumen houses a complex microbiota which is responsible for the degradation of plant material consisting mainly of indigestible sugar polymers such as cellulose and hemicelluloses, consequently enabling the conversion of plant fibers into chemical compounds that are absorbed and digested by the animal. This cooperative relationship between the ruminant and its resident ruminal microorganisms evolved over millions of years and has implications for our everyday lives with respect to food, environment, renewable energy and economics. Ruminants hold enormous significance for man as they can convert energy stored in plant mass, which is mainly indigestible for humans, to digestible food products. Because of this trait, ruminants have been extremely important in the evolution of human civilizations via their effects on the development of hunting and agricultural societies (White LA (2007) The evolution of culture: the development of civilization to the fall of Rome. Left Coast Press, Walnut Creek, CA). Today, a significant proportion of domesticated animal species worldwide—the source for most meat and dairy products—are ruminants. Hence, an understanding of this complex ecosystem is of major interest. This chapter discusses several aspects of this ecosystem: the physiology of the ruminant digestive system and its suitability for cooperative interaction with its resident microbiota, the composition of overall rumen metabolism and its role in ruminant well-being, the ruminal microbial populations, their interactions with each other, their importance and effects on the host, and their acquisition after birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni Y, Brosh A, Kafchuk E (2006) The efficiency of utilization of metabolizable energy for milk production: a comparison of Holstein with F1 Montbeliarde 3 Holstein cows. Anim Sci 82:101–109

    Google Scholar 

  • Akin DE, Benner R (1988) Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Appl Environ Microbiol 54(5):1117–1125

    PubMed  CAS  Google Scholar 

  • Akin DE, Lyon CE, Windham WR, Rigsby LL (1989) Physical degradation of lignified stem tissues by ruminal fungi. Appl Environ Microbiol 55(3):611–616

    PubMed  CAS  Google Scholar 

  • Archer JA, Richardson EC, Herd RM, Arthur PF (1999) Potential for selection to improve efficiency of feed use in beef cattle. Aust J Agric Res 50(2):147–162

    Google Scholar 

  • Arthur PF, Archer JA, Johnston DJ, Herd RM, Richardson EC, Parnell PF (2001) Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J Anim Sci 79(11):2805–2811

    PubMed  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43(2):260–269

    PubMed  CAS  Google Scholar 

  • Basarab JA, Price MA, Aalhus JL, Okine EK, Snelling WM, Lyle KL (2003) Residual feed intake and body composition in young growing cattle. Can J Anim Sci 83:189–204

    Google Scholar 

  • Bauchop T, Mountfort DO (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 42(6):1103–1110

    PubMed  CAS  Google Scholar 

  • Belanche A, Abecia L, Holtrop G, Guada JA, Castrillo C, de la Fuente G, Balcells J (2011) Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme. J Anim Sci. doi:10.2527/jas.2010-3703

    Google Scholar 

  • Bernalier A, Fonty G, Bonnemoy F, Gouet P (1993) Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. J Gen Microbiol 139(4):873–880

    PubMed  CAS  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106(6):1948–1953

    PubMed  CAS  Google Scholar 

  • Bryant MP, Small N (1960) Observations on the ruminal microorganisms of isolated and inoculated calves. J Dairy Sci 43(5):654–667

    Google Scholar 

  • Bryant MP, Wolin MJ (1975) Rumen bacteria and their metabolic interactions. In: Proceedings of the first intersectional congress of the International Association of Microbiology. Societies Science Council of Japan, Tokyo, vol 2, pp 297–306

    Google Scholar 

  • Bryant MP, Small N, Bouma C, Robinsona I (1958) Studies on the composition of the ruminal flora and fauna of young calves. J Dairy Sci 41(12):1747–1767

    Google Scholar 

  • Cai S, Li J, Hu FZ, Zhang K, Luo Y, Janto B, Boissy R, Ehrlich G, Dong X (2010) Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate-borne fibrolytic enzymes. Appl Environ Microbiol 76(12):3818–3824

    PubMed  CAS  Google Scholar 

  • Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, Kononoff PJ, Nisbet DJ (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88(12):3977–3983

    PubMed  CAS  Google Scholar 

  • Chen M, Wolin MJ (1977) Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Appl Environ Microbiol 34(6):756–759

    PubMed  CAS  Google Scholar 

  • Chen J, Stevenson DM, Weimer PJ (2004) Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl Environ Microbiol 70(5):3167–3170

    PubMed  CAS  Google Scholar 

  • Church DC (1969) Digestive physiology and nutrition of ruminants, 2nd edn. O. S. U Book Stores, Corvallis, OR

    Google Scholar 

  • Coleman GS (1962) The preparation and survival of almost bacteria-free suspensions of Entodinium caudatum. J Gen Microbiol 28:271–281

    PubMed  CAS  Google Scholar 

  • Coleman GS (1964) The metabolism of Escherichia coli and other bacteria by Entodinium caudatum. J Gen Microbiol 37:209–223

    PubMed  CAS  Google Scholar 

  • Coleman GS (1967a) The metabolism of free amino acids by washed suspensions of the rumen ciliate Entodinium caudatum. J Gen Microbiol 47(3):433–447

    PubMed  CAS  Google Scholar 

  • Coleman GS (1967b) The metabolism of the amino acids of Escherichia coli and other bacteria by the rumen ciliate Entodinium caudatum. J Gen Microbiol 47(3):449–464

    PubMed  CAS  Google Scholar 

  • Cookson AL, Noel SJ, Kelly WJ, Attwood GT (2004) The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep. FEMS Microbiol Ecol 48(2):199–207

    PubMed  CAS  Google Scholar 

  • Counotte GH, van’t Klooster AT, van der Kuilen J, Prins RA (1979) An analysis of the buffer system in the rumen of dairy cattle. J Anim Sci 49(6):1536–1544

    PubMed  CAS  Google Scholar 

  • Crews DH Jr (2005) Genetics of efficient feed utilization and national cattle evaluation: a review. Genet Mol Res 4(2):152–165

    PubMed  Google Scholar 

  • Czerkawski JW (1969) Methane production in ruminants and its significance. World Rev Nutr Diet 11:240–282

    PubMed  CAS  Google Scholar 

  • Dehority BA (1991) Effects of microbial synergism on fibre digestion in the rumen. Proc Nutr Soc 50(2):149–159

    PubMed  CAS  Google Scholar 

  • Dehority BA (2003) Rumen microbiology. Nottingham University Press, Nottingham, UK

    Google Scholar 

  • Dehority BA, Tirabasso PA (2000) Antibiosis between ruminal bacteria and ruminal fungi. Appl Environ Microbiol 66(7):2921–2927

    PubMed  CAS  Google Scholar 

  • Dehority BA, Tirabasso PA (2001) Effect of feeding frequency on bacterial and fungal concentrations, pH, and other parameters in the rumen. J Anim Sci 79(11):2908–2912

    PubMed  CAS  Google Scholar 

  • Eadie JM, Hobson PN (1962) Effect of the presence or absence of rumen ciliate protozoa on the total rumen bacterial count in lambs. Nature 193:503–505

    PubMed  CAS  Google Scholar 

  • Ellis JE, Williams AG, Lloyd D (1989) Oxygen consumption by ruminal microorganisms: protozoal and bacterial contributions. Appl Environ Microbiol 55(10):2583–2587

    PubMed  CAS  Google Scholar 

  • Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J (2007) Prediction of methane production from dairy and beef cattle. J Dairy Sci 90(7):3456–3466

    PubMed  CAS  Google Scholar 

  • Elsden SR, Gilchrist FM, Lewis D, Volcani BE (1956) Properties of a fatty acid forming organism isolated from the rumen of sheep. J Bacteriol 72(5):681–689

    PubMed  CAS  Google Scholar 

  • Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA (2002) Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Can J Microbiol 48(4):374–378

    PubMed  CAS  Google Scholar 

  • Fernando SC, Purvis HT II, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490

    PubMed  CAS  Google Scholar 

  • Ferrell CL, Jenkins TG (1985) Energy utilization by Hereford and Simmental males and females. Anim Prod 41:53–61

    Google Scholar 

  • Flint HJ (1997) The rumen microbial ecosystem—some recent developments. Trends Microbiol 5(12):483–488

    PubMed  CAS  Google Scholar 

  • Flint HJ, Bayer EA (2008) Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann N Y Acad Sci 1125:280–288

    PubMed  CAS  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131

    PubMed  CAS  Google Scholar 

  • Fondevila M, Dehority BA (2001a) In vitro growth and starch digestion by Entodinium exiguum as influenced by the presence or absence of live bacteria. J Anim Sci 79(9):2465–2471

    PubMed  CAS  Google Scholar 

  • Fondevila M, Dehority BA (2001b) Preliminary study on the requirements of Entodinium exiguum and E. caudatum for live or dead bacteria when cultured in vitro. Reprod Nutr Dev 41(1):41–46

    PubMed  CAS  Google Scholar 

  • Fonty G, Gouet P, Jouany J-P, Senaud J (1987) Establishment of the microflora and anaerobic fungi in the rumen of lambs. J Gen Microbiol 133:1835–1843

    Google Scholar 

  • Frank SA (1996) Host-symbiont conflict over the mixing of symbiotic lineages. Proc Biol Sci 263(1368):339–344

    PubMed  CAS  Google Scholar 

  • Gorris LG, van der Drift C (1994) Cofactor contents of methanogenic bacteria reviewed. Biofactors 4(3–4):139–145

    PubMed  CAS  Google Scholar 

  • Guan LL, Nkrumah JD, Basarab JA, Moore SS (2008) Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiol Lett 288(1):85–91

    PubMed  CAS  Google Scholar 

  • Gutierrez J (1958) Observations on bacterial feeding by the rumen ciliate Isotricha prostoma. J Protozool 5(2):122–126

    Google Scholar 

  • Gutierrez J, Davis RE (1959) Bacterial ingestion by the rumen ciliates Entodinium and Diplodiniztm. J Protozool 6:222–226

    Google Scholar 

  • Hackstein JH, Vogels GD (1997) Endosymbiotic interactions in anaerobic protozoa. Antonie Van Leeuwenhoek 71(1–2):151–158

    PubMed  CAS  Google Scholar 

  • Hardin G (1968) The tragedy of the commons: the population problem has no technical solution; it requires a fundamental extension in morality. Science 162(3859):1243–1248

    PubMed  CAS  Google Scholar 

  • Hegarty RS, Bird SH, Vanselow BA, Woodgate R (2008) Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. Br J Nutr 100(6):1220–1227

    PubMed  CAS  Google Scholar 

  • Herd RM, Archer JA, Arthur PF (2003) Reducing the cost of beef production through genetic improvement in residual feed intake: opportunity and challenges to application. J Anim Sci 81:9–17

    Google Scholar 

  • Hernandez-Sanabria E, Guan LL, Goonewardene LA, Li M, Mujibi DF, Stothard P, Moore SS, Leon-Quintero MC (2010) Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. Appl Environ Microbiol 76(19):6338–6350

    PubMed  CAS  Google Scholar 

  • Herre EA, Knowlton N, Mueller U, Rehener S (1999) The evolution of mutualisms: exploring the paths between conflicts and cooperation. Trends Ecol Evol 14:49–53

    PubMed  Google Scholar 

  • Ho YW, Abdullah N, Jalaludin S (1988) Penetrating structure of anaerobic rumen fungi in cattle and swamp buffalo. J Gen Microbiol 134:177–181

    Google Scholar 

  • Holter JB, Young AJ (1992) Methane prediction in dry and lactating Holstein cows. J Dairy Sci 75(8):2165–2175

    PubMed  CAS  Google Scholar 

  • Hook SE, Wright AD, McBride BW (2011) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010:945785

    Google Scholar 

  • Hoover WH, Miller TK (1991) Rumen digestive physiology and microbial ecology. Vet Clin North Am Food Anim Pract 7(2):311–325

    PubMed  CAS  Google Scholar 

  • Hotovy SK, Johnson KA, Johnson DE, Carstens GE, Bourdon RM, Seidel GE Jr (1991) Variation among twin beef cattle in maintenance energy requirements. J Anim Sci 69(3):940–946

    PubMed  CAS  Google Scholar 

  • Hungate RE, Smith W, Bauchop T, Yu I, Rabinowitz JC (1970) Formate as an intermediate in the bovine rumen fermentation. J Bacteriol 102(2):389–397

    PubMed  CAS  Google Scholar 

  • Irbis C, Ushida K (2004) Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 50(4):203–212

    PubMed  CAS  Google Scholar 

  • Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7:e33306

    Google Scholar 

  • Janssen PH (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 160:1–22

    CAS  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625

    PubMed  CAS  Google Scholar 

  • Jeyanathan J, Kirs M, Ronimus RS, Hoskin SO, Janssen PH (2011) Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol Ecol 76(2):311–326

    PubMed  CAS  Google Scholar 

  • Joblin KN, Naylor GE, Williams AG (1990) Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl Environ Microbiol 56(8):2287–2295

    PubMed  CAS  Google Scholar 

  • Johns AT (1951) Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J Gen Microbiol 5(2):317–325

    PubMed  CAS  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73(8):2483–2492

    PubMed  CAS  Google Scholar 

  • Johnson DE, Ferrell CL, Jenkins TG (2003) The history of energetic efficiency research: where have we been and where are we going? J Anim Sci 81:27–38

    Google Scholar 

  • Jolles P, Schoentgen F, Jolles J, Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants. II. Amino acid sequence of cow lysozyme 2 and immunological comparisons with other lysozymes. J Biol Chem 259(18):11617–11625

    PubMed  CAS  Google Scholar 

  • Jolles J, Jolles P, Bowman BH, Prager EM, Stewart CB, Wilson AC (1989) Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol 28(6):528–535

    PubMed  CAS  Google Scholar 

  • Kalmokoff ML, Teather RM (1997) Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens. Appl Environ Microbiol 63(2):394–402

    PubMed  CAS  Google Scholar 

  • Kay RN (1966) The influence of saliva on digestion in ruminants. World Rev Nutr Diet 6:292–325

    PubMed  CAS  Google Scholar 

  • Kay RN (1969) Digestion of protein in the intestines of adult ruminants. Proc Nutr Soc 28(1):140–151

    PubMed  CAS  Google Scholar 

  • Koch RM, Swiger LA, Chambers D, Gregory KE (1963) Efficiency of feed use in beef cattle. J Anim Sci 22:486–494

    Google Scholar 

  • Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27(5):663–693

    PubMed  CAS  Google Scholar 

  • Krumholz LR, Forsberg CW, Veira DM (1983) Association of methanogenic bacteria with rumen protozoa. Can J Microbiol 29(6):676–680

    PubMed  CAS  Google Scholar 

  • Latham MJ, Wolin MJ (1977) Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 34(3):297–301

    PubMed  CAS  Google Scholar 

  • Laukova A (1993) Antagonistic activity of the rumen bacteria, Enterococcus faecium and Staphylococcus warneri. Vet Med (Praha) 38(5):267–274

    CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    PubMed  CAS  Google Scholar 

  • Lloyd D, Hillman K, Yarlett N, Williams AG (1989) Hydrogen production by rumen holotrich protozoa: effects of oxygen and implications for metabolic control by in situ conditions. J Protozool 36(2):205–213

    PubMed  CAS  Google Scholar 

  • Mackie RI (2002) Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comp Biol 42(2):319–326

    PubMed  Google Scholar 

  • Mah RA (1964) Factors influencing the in vitro culture of the rumen ciliate Ophryoscolex purkynei Stein. J Protozool 11:546–552

    PubMed  CAS  Google Scholar 

  • Marvin-Sikkema FD, Richardson AJ, Stewart CS, Gottschal JC, Prins RA (1990) Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl Environ Microbiol 56(12):3793–3797

    PubMed  CAS  Google Scholar 

  • McAllister TA, Newbold CJ (2008) Redirecting rumen methane to reduce methanogenesis. Aust J Exp Agric 48:7–13

    CAS  Google Scholar 

  • McAllister TA, Bae HD, Jones GA, Cheng KJ (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72(11):3004–3018

    PubMed  CAS  Google Scholar 

  • Merchen NR, Elizalde JC, Drackley JK (1997) Current perspective on assessing site of digestion in ruminants. J Anim Sci 75(8):2223–2234

    PubMed  CAS  Google Scholar 

  • Minato H, Otsuka M, Shirasaka S, Itabashi H, Mitsumori M (1992) Colonization of microorganisms in the rumen of young calves. J Gen Appl Microbiol 38(5):447–456

    Google Scholar 

  • Miron J, Ben-Ghedalia D, Morrison M (2001) Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84(6):1294–1309

    PubMed  CAS  Google Scholar 

  • Mitsumori M, Xu L, Kajikawa H, Kurihara M, Tajima K, Hai J, Takenaka A (2003) Possible quorum sensing in the rumen microbial community: detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol Lett 219(1):47–52

    PubMed  CAS  Google Scholar 

  • Miura H, Horiguchi M, Matsumoto T (1980) Nutritional interdependence among rumen bacteria, Bacteroides amylophilus, Megasphaera elsdenii, and Ruminococcus albus. Appl Environ Microbiol 40(2):294–300

    PubMed  CAS  Google Scholar 

  • Miura H, Horiguchi M, Ogimoto K, Matsumoto T (1983) Nutritional interdependence among rumen bacteria during cellulose digestion in vitro. Appl Environ Microbiol 45(2):726–729

    PubMed  CAS  Google Scholar 

  • Moore SS, Mujibi FD, Sherman EL (2009) Molecular basis for residual feed intake in beef cattle. J Anim Sci 87(14 Suppl):E41–E47

    PubMed  CAS  Google Scholar 

  • Morovsky M, Pristas P, Javorsky P (2001) Bacteriocins of ruminal bacteria. Folia Microbiol (Praha) 46(1):61–62

    CAS  Google Scholar 

  • Mosoni P, Martin C, Forano E, Morgavi DP (2011) Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. J Anim Sci 89(3):783–791

    PubMed  CAS  Google Scholar 

  • Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332(6032):970–974

    PubMed  CAS  Google Scholar 

  • Muller M (1993) The hydrogenosome. J Gen Microbiol 139(12):2879–2889

    PubMed  CAS  Google Scholar 

  • Newbold CJ, Lassalas B, Jouany JP (1995) The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 21(4):230–234

    PubMed  CAS  Google Scholar 

  • Nkrumah JD, Basarab JA, Price MA, Okine EK, Ammoura A, Guercio S, Hansen C, Li C, Benkel B, Murdoch B, Moore SS (2004) Different measures of energetic efficiency and their phenotypic relationships with growth, feed intake, and ultrasound and carcass merit in hybrid cattle. J Anim Sci 82(8):2451–2459

    PubMed  CAS  Google Scholar 

  • Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS (2006) Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci 84(1):145–153

    PubMed  CAS  Google Scholar 

  • Odenyo AA, Mackie RI, Stahl DA, White BA (1994a) The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl Environ Microbiol 60(10):3688–3696

    PubMed  CAS  Google Scholar 

  • Odenyo AA, Mackie RI, Stahl DA, White BA (1994b) The use of 16 S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl Environ Microbiol 60(10):3697–3703

    PubMed  CAS  Google Scholar 

  • Ogimoto K, Imai S (1981) Atlas of rumen microbiology. Japan Scientific Societies Press, Tokyo, Japan

    Google Scholar 

  • Orpin CG (1975) Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91(2):249–262

    PubMed  CAS  Google Scholar 

  • Ozutsumi Y, Tajima K, Takenaka A, Itabashi H (2005) The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Biosci Biotechnol Biochem 69(3):499–506

    PubMed  CAS  Google Scholar 

  • Pavlostathis SG, Miller TL, Wolin MJ (1988) Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl Environ Microbiol 54(11):2655–2659

    PubMed  CAS  Google Scholar 

  • Ranilla MJ, Jouany JP, Morgavi DP (2007) Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Lett Appl Microbiol 45(6):675–680

    PubMed  CAS  Google Scholar 

  • Ricard G, McEwan NR, Dutilh BE, Jouany JP, Macheboeuf D, Mitsumori M, McIntosh FM, Michalowski T, Nagamine T, Nelson N, Newbold CJ, Nsabimana E, Takenaka A, Thomas NA, Ushida K, Hackstein JH, Huynen MA (2006) Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7:22

    PubMed  Google Scholar 

  • Richardson EC, Herd RM, Arthur PF, Wright J, Xu G, Dibley K, Oddy VH (1996) Possible physiological indicators of net feed conversion efficiency. Proc Austral Soc Anim Prod 21:901–908

    Google Scholar 

  • Richardson EC, Herd RM, Archer JA, Arthur PF (2004) Metabolic differences in Angus steers divergently selected for residual feed intake. Aust J Exp Agric 44:441–452

    Google Scholar 

  • Russell JB (1985) Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl Environ Microbiol 49(3):572–576

    PubMed  CAS  Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292(5519):1119–1122

    PubMed  CAS  Google Scholar 

  • Russell JB, Wilson DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79(8):1503–1509

    PubMed  CAS  Google Scholar 

  • Rychlik JL, Russell JB (2002) Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production. Appl Environ Microbiol 68(3):1040–1046

    PubMed  CAS  Google Scholar 

  • Saluzzi L, Smith A, Stewart CS (1993) Analysis of bacterial phospholipid markers and plant monosaccharides during forage degradation by Ruminococcus flavefaciens and Fibrobacter succinogenes in co-culture. J Gen Microbiol 139(11):2865–2873

    PubMed  CAS  Google Scholar 

  • Solis JC, Byers FM, Schelling GT, Long CR, Greene LW (1988) Maintenance requirements and energetic efficiency of cows of different breed types. J Anim Sci 66(3):764–773

    PubMed  CAS  Google Scholar 

  • Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577

    PubMed  CAS  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75(1):165–174

    PubMed  CAS  Google Scholar 

  • Stewart CS (1986) Rumen function with special reference to fibre digestion. Soc Appl Bacteriol Symp Ser 13:263–286

    PubMed  CAS  Google Scholar 

  • Stewart CS, Duncan SH, Richardson AJ, Backwell C, Begbie R (1992) The inhibition of fungal cellulolysis by cell-free preparations from ruminococci. FEMS Microbiol Lett 76(1–2):83–87

    PubMed  CAS  Google Scholar 

  • Storm E, Ørskov ER (1983) The nutritive value of rumen microorganisms in ruminant. 1. Large-scale isolation and chemical composition of rumen microorganisms. Br J Nutr 50:463–470

    PubMed  CAS  Google Scholar 

  • Sultana H, Miyazawa K, Kanda S, Itabashi H (2011) Fatty acid composition of ruminal bacteria and protozoa, and effect of defaunation on fatty acid profile in the rumen with special reference to conjugated linoleic acid in cattle. Anim Sci J 82(3):434–440

    PubMed  CAS  Google Scholar 

  • Taylor SCS, Thiessen RB, Murray J (1986) Inter-breed relationship of maintenance efficiency to milk yield in cattle. Anim Prod 43:37–61

    Google Scholar 

  • Teunissen MJ, Kets EP, Op den Camp HJ, Huis in’t Veld JH, Vogels GD (1992) Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch Microbiol 157(2):176–182

    PubMed  CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591

    PubMed  CAS  Google Scholar 

  • Thiessen RB, Taylor SCS, Murray J (1985) Multibreed comparisons of British cattle. Variation in relative growth rate, relative food intake and food conversion efficiency. Anim Prod 41:193–199

    Google Scholar 

  • Tokura M, Chagan I, Ushida K, Kojima Y (1999) Phylogenetic study of methanogens associated with rumen ciliates. Curr Microbiol 39(3):123–128

    PubMed  CAS  Google Scholar 

  • Tolkamp BJ (2010) Efficiency of energy utilisation and voluntary feed intake in ruminants. Animal 4(7):1084–1092

    PubMed  CAS  Google Scholar 

  • Tothova T, Piknova M, Kisidayova S, Javorsky P, Pristas P (2008) Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum. Folia Microbiol (Praha) 53(3):259–262

    CAS  Google Scholar 

  • Trinci AP, Lowe SE, Milne A, Theodorou MK (1988) Growth and survival of rumen fungi. Biosystems 21(3–4):357–363

    PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587(17):4153–4158

    PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    PubMed  Google Scholar 

  • Ushida K, Jouany JP (1996) Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Lett Appl Microbiol 23(2):129–132

    PubMed  CAS  Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40(3):608–612

    PubMed  CAS  Google Scholar 

  • Weimer PJ, Russell JB, Muck RE (2009) Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresour Technol 100(21):5323–5331

    PubMed  CAS  Google Scholar 

  • Welch JG (1986) Physical parameters of fiber affecting passage from the rumen. J Dairy Sci 69(10):2750–2754

    PubMed  CAS  Google Scholar 

  • Welch JG, Smith AM (1969) Influence of forage quality on rumination time in sheep. J Anim Sci 28(6):813–818

    PubMed  CAS  Google Scholar 

  • Welkie DG, Stevenson DM, Weimer PJ (2009) ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 16(2):94–100

    PubMed  Google Scholar 

  • Whitford MF, McPherson MA, Forster RJ, Teather RM (2001) Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl Environ Microbiol 67(2):569–574

    PubMed  CAS  Google Scholar 

  • Williams AG, Coleman GS (1992) The rumen protozoa. Springer, New York

    Google Scholar 

  • Williams AG, Withers SE, Joblin KN (1991) Xylanolysis by cocultures of the rumen fungus Neocallimastix frontalis and ruminal bacteria. Lett Appl Microbiol 12(6):232–235

    CAS  Google Scholar 

  • Windham WR, Akin DE (1984) Rumen fungi and forage fiber degradation. Appl Environ Microbiol 48(3):473–476

    PubMed  CAS  Google Scholar 

  • Wolin MJ (1979) The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv Microb Ecol 3:49–77

    CAS  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:117–210

    Google Scholar 

  • Xavier BM, Russell JB (2009) The ability of non-bacteriocin producing Streptococcus bovis strains to bind and transfer bovicin HC5 to other sensitive bacteria. Anaerobe 15(4):168–172

    PubMed  CAS  Google Scholar 

  • Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64(8):1737–1742

    PubMed  CAS  Google Scholar 

  • Yanez-Ruiz DR, Williams S, Newbold CJ (2007) The effect of absence of protozoa on rumen biohydrogenation and the fatty acid composition of lamb muscle. Br J Nutr 97(5):938–948

    PubMed  CAS  Google Scholar 

  • Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75(20):6524–6533

    PubMed  CAS  Google Scholar 

  • Zhou M, Hernandez-Sanabria E, Guan LL (2010) Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76(12):3776–3786

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzhak Mizrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mizrahi, I. (2013). Rumen Symbioses. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30194-0_1

Download citation

Publish with us

Policies and ethics