Skip to main content

Seismic Analysis of Pile Foundations Using an Integrated Approach

  • Chapter
  • First Online:
Advances in Earthquake Geotechnics

Abstract

This article presents an integrated approach for seismic analysis of pile foundations and demonstrates the applicability through an example. The approach involves various steps starting from identifying the seismic sources, analyzing local soil conditions, ground response analysis, and dynamic analysis of pile foundations. The complete nonlinearity of the soil (in case of liquefied soils) is incorporated in the analysis through nonlinear effective stress-based ground response and liquefaction analysis. A single pile and a 2 × 2 pile group are considered and dynamic analysis with varying earthquake intensities of ground motions have been applied to analyze the effect of intensity on pile response. The obtained results are presented in terms of pile displacements and bending moments. A state-of-the-art strain-hardening model has been utilized to simulate the response of pile in liquefied stratum. The proposed approach can be adopted for the design of pile-supported structures in seismically active regions as well as requalification studies of existing pile-supported structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • API 2000 American Petroleum Institute (2014). API Recommended Practice 2A-WSD. 7056 (November).

    Google Scholar 

  • Bhattacharya, S., & Madabhushi, S. P. G. (2008). A critical review of methods for pile design in seismically liquefiable soils. Bulletin of Earthquake Engineering, 6(3), 407–446. https://doi.org/10.1007/s10518-008-9068-3.

    Article  Google Scholar 

  • Bhattacharya, S., Tokimatsu, K., Goda, K., Sarkar, R., Shadlou, M., & Rouholamin, M. (2014). Collapse of Showa Bridge during 1964 Niigata earthquake: A quantitative reappraisal on the failure mechanisms. Soil Dynamics and Earthquake Engineering, 65(55), 71. https://doi.org/10.1016/j.soildyn.2014.05.004.

  • Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73(6), 1865–1894. http://www.bssaonline.org/cgi/content/abstract/73/6A/1865.

  • Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160(3), 635–676. https://doi.org/10.1007/PL00012553.

    Article  Google Scholar 

  • Boulanger, R. W., & Idriss, I. M. (2006). Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413–1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413).

    Article  Google Scholar 

  • Boulanger, B. R. W., Curras, C. J., Member, S., Kutter, B. L., Wilson, D. W., Member, A., & Abghari, A. (1999). Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical & Geoenvironmental Engineering, 125(9), 750–759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125.

    Article  Google Scholar 

  • Brown, B. D. A., Morrison, C., & Reese, L. C. (1988). Lateral laod behavior of pile group in sand. Journal of Geotechnical Engineering, 114(11), 1261–1276.

    Article  Google Scholar 

  • Chattaraj, R., & Sengupta, A. (2016). Liquefaction potential and strain dependent dynamic properties of Kasai River sand. Soil Dynamics and Earthquake Engineering, 90, 467–475. https://doi.org/10.1016/j.soildyn.2016.07.023.

    Article  Google Scholar 

  • Computers and Structures Inc. (2015). CSI Analysis Reference Manual. December, 496.

    Google Scholar 

  • Dammala, P. K. (2019). Dynamic characterisation of soils and seismic analysis of deep foundations (Doctoral dissertation).

    Google Scholar 

  • Dammala, P. K., & Krishna, A. M. (2019). Kinematic response of pile foundations in liquefiable soils. In F. Silvestri & Moraci (Eds.), Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions (Issue 1999, pp. 1944–1951).

    Google Scholar 

  • Dammala, P. K., Bhattacharya, S., Krishna, A. M., Kumar, S. S., & Dasgupta, K. (2017a). Scenario based seismic re-qualification of caisson supported major bridges: A case study of Saraighat Bridge. Soil Dynamics and Earthquake Engineering, 100, 270–275. https://doi.org/10.1016/j.soildyn.2017.06.005.

    Article  Google Scholar 

  • Dammala, P. K., Krishna, A. M., Bhattacharya, S., Nikitas, G., & Rouholamin, M. (2017b). Dynamic soil properties for seismic ground response studies in Northeastern India. Soil Dynamics and Earthquake Engineering, 100, 357–370. https://doi.org/10.1016/j.soildyn.2017.06.003.

    Article  Google Scholar 

  • Dammala, P. K., Rouholamin, M., Nikitas, G., Bhattacharya, S., & Murali Krishna, A. (2017c). Bending response of pile foundations during partial liquefaction. IGC, 1–10.

    Google Scholar 

  • Dammala, P. K., Kumar, S. S., Krishna, A. M., & Bhattacharya, S. (2019a). Dynamic soil properties and liquefaction potential of northeast Indian soil for non-linear effective stress analysis. Bulletin of Earthquake Engineering, vol. 17, Issue 6. Springer Netherlands. https://doi.org/10.1007/s10518-019-00592-6.

  • Dammala, P. K., & Murali Krishna, A. (2019b). Dynamic characterization of soils using various methods for seismic site response studies. In Frontiers in geotechnical engineering (pp. 273–301). Springer, Singapore.

    Google Scholar 

  • Dash, S. R., Govindaraju, L., & Bhattacharya, S. (2009). A case study of damages of the Kandla port and customs office tower supported on a mat-pile foundation in liquefied soils under the 2001 Bhuj earthquake. Soil Dynamics and Earthquake Engineering, 29, 333–346. https://doi.org/10.1016/j.soildyn.2008.03.004.

    Article  Google Scholar 

  • Dash, S., Rouholamin, M., Lombardi, D., & Bhattacharya, S. (2017). A practical method for construction of p-y curves for lique fi able soils. Soil Dynamics and Earthquake Engineering, 97(March), 478–481. https://doi.org/10.1016/j.soildyn.2017.03.002.

    Article  Google Scholar 

  • DNV. (2014). DNV-OS-J101 design of offshore wind turbine structures. May.

    Google Scholar 

  • Finn, W. D. L. (2005). a study of piles during earthquakes : Issues of design and analysis. 141–234. https://doi.org/10.1007/s10518-005-1241-3.

  • Garala, T. K., & Madabhushi, G. S. P. (2019). Seismic behaviour of soft clay and its influence on the response of friction pile foundations. Bulletin of Earthquake Engineering, 17(4), 1919–1939. https://doi.org/10.1007/s10518-018-0508-4.

    Article  Google Scholar 

  • Haldar, S., & Babu, G. L. S. (2010). Failure mechanisms of pile foundations in liquefiable soil: Parametric study. International Journal of Geomechanics, 10(April), 74–84.

    Article  Google Scholar 

  • Hanks, T. C., & McGuire, R. K. (1981). The character of high-frequency strong ground motion. Bulletin of the Seismological Society of America, 71(6), 2071–2095. http://www.bssaonline.org/content/71/6/2071.abstract.

  • Hashash, Y. M. A., Musgrouve, M. I., Harmon, J. A., Groholski, D. R., Phillips, C., & Park, D. (2016). DEEPSOIL 6.1, User Manual.

    Google Scholar 

  • Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2–4 SPEC. ISS.), 115–130. https://doi.org/10.1016/j.soildyn.2004.11.023.

  • Imai, T., & Tonouchi, K. (1982). Correlation of N-value with S-wave velocity and shear modulus. Proceedings of the 2nd European Symposium on Penetration Testing, 57–72.

    Google Scholar 

  • IS:1893. (2016). Criteria for earthquake resistant design of structures. Indian Standard, 1–44.

    Google Scholar 

  • Krishna, A. M., & Madhav, M. R. (2009). Engineering of ground for liquefaction mitigation using granular columnar inclusions: Recent developments. American Journal of Engineering and Applied Sciences, 2(3), 526–536. https://doi.org/10.3844/ajeassp.2009.526.536.

    Article  Google Scholar 

  • Krishna, A. M., Bhattacharya, S., Choudhury, D. (2014). Seismic requalification of geotechnical structures. Indian Geotechnical Journal, 44, 113–118. https://doi.org/10.1007/s40098-014-0115-5.

  • Kumar, A., Choudhury, D., & Katzenbach, R. (2016). Effect of earthquake on combined pile—raft foundation. 16(5), 1–16. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000637.

  • Kumar, S. S., Krishna, A. M., & Dey, A. (2017). Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dynamics and Earthquake Engineering, 99(May 2016), 157–167. https://doi.org/10.1016/j.soildyn.2017.05.016.

  • Kumar, S. S., Adapa, M. K., & Dey, A. (2018a). Importance of site-specific dynamic soil properties for seismic ground response studies. International Journal of Geotechnical Earthquake Engineering, In press.

    Google Scholar 

  • Kumar, S. S., Dey, A., & Krishna, A. M. (2018b). Response of saturated cohesionless soil subjected to irregular seismic excitations. Natural Hazards, 93(1), 509–529. https://doi.org/10.1007/s11069-018-3312-1.

    Article  Google Scholar 

  • Kumar, S. S., Krishna, A. M., Dey, A. (2018c). Dynamic properties and liquefaction behaviour of cohesive soil in northeast India under staged cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering 1–10 https://doi.org/10.1016/j.jrmge.2018c.04.004.

  • Lanzo, G., Vucetic, M., & Doroudian, M. (1997). Reduction of shear modulus at small strains in simple shear. Journal of Geotechnical and Geoenvironmental Engineering, 123(11), 1035–1042. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(1035).

    Article  Google Scholar 

  • Liyanapathirana, D. S., & Poulos, H. G. (2005). Pseudostatic approach for seismic analysis of piles in liquefying soil. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1480–1487. https://doi.org/10.1016/j.compgeo.2009.07.001.

    Article  Google Scholar 

  • Lombardi, D., Dash, S. R., Bhattacharya, S., Ibraim, E., Muir Wood, D., & Taylor, C. A. (2016). Construction of simplified design py curves for liquefied soils. Géotechnique, 1(3), 1–12. https://doi.org/10.1680/jgeot.15.P.116.

    Article  Google Scholar 

  • Mukherjee, S., & Gupta, V. K. (2002). Wavelet-based generation of spectrum-compatible time-histories. Soil Dynamics and Earthquake Engineering, 22(9–12), 799–804. https://doi.org/10.1016/S0267-7261(02)00101-X.

    Article  Google Scholar 

  • Mylonakis, G. (2001). Simplified model for seismic pile bending at soil layer interfaces. Soils and FoundationsSoils and Foundations, 41(4), 47–58.

    Article  Google Scholar 

  • Mylonakis, G., Syngros, C., Gazetas, G., & Tazoh, T. (2006). The role of soil in the collapse of 18 piers of Hanshin expressway in the Kobe earthquake. Earthquake Engineering and Structural Dynamics, 35(5), 547–575. https://doi.org/10.1002/eqe.543.

    Article  Google Scholar 

  • Nikolaou, S., Mylonakis, G., Gazetas, G., & Tazoh, T. (2001). Kinematic pile bending during earthquakes: Analysis and field measurements. Geotechnique, 51(5), 425–440.

    Article  Google Scholar 

  • Nogami, B. T., Otani, J., Konagai, K., & Chen, H. (1992). Nonlinears oil–pile interaction model for dynamic lateral motion. 118(1), 89–106.

    Google Scholar 

  • Novak et al., 1978 Novak, M., Aboul-Ella, F., Nogami, T. (1978). Dynamic soil reactions for plane strain case. Journal of Engineering Mechanics, 104(4), 953–959.

    Google Scholar 

  • Park, D., & Hashash, Y. M. A. (2008). Rate-dependent soil behavior in seismic site response analysis. Canadian Geotechnical Journal, 45(4), 454–469. https://doi.org/10.1139/T07-090.

    Article  Google Scholar 

  • Puri, N., Nikitas, G., Jain, A., Dammala, P. K., & Bhattacharya, S. (2019). Dynamic soil properties and seismic ground response analysis for North Indian seismic belt subjected to the great Himalayan Earthquakes. Soil Dynamics and Earthquake Engineering, (Under Rev).

    Google Scholar 

  • Raghukanth, S. T. G., & Dash, S. K. (2010). Evaluation of seismic soil-liquefaction at Guwahati city. Environmental Earth Sciences, 61(2), 355–368. https://doi.org/10.1007/s12665-009-0347-3.

    Article  Google Scholar 

  • Raghukanth, S. T. G., Sreelatha, S., & Dash, S. K. (2008). Ground motion estimation at Guwahati city for an Mw 8.1 earthquake in the Shillong plateau. Tectonophysics, 448(1–4), 98–114. https://doi.org/10.1016/j.tecto.2007.11.028.

  • Randolph, M. F. (1981). The response of flexible piles to lateral loading. Geotechnique, 31(2), 247–259.

    Article  Google Scholar 

  • Rele, R., Dammala, P. K., Bhattacharya, S., & Balmukund, R. (2019). Seismic behaviour of rocking bridge pier supported by novel elastomeric pads on pile foundation. Soil Dynamics and Earthquake Engineering, 124, 98–120.

    Article  Google Scholar 

  • Rostami, R., Hytiris, N., Bhattacharya, S., & Giblin, M. (2017). Seismic analysis of pile in liquefiable soil and plastic hinge. Geotechnical Research, 4(4), 203–213. https://doi.org/10.1680/jgere.17.00009.

    Article  Google Scholar 

  • Rouholamin, M. (2016). An experimental investigation of transient dynamics of pile-supported structures in liquefiable soils. Mehdi Rouholamin A thesis submitted for the degree of Doctor of Philosophy at the University of Surrey , (Issue April).

    Google Scholar 

  • Rouholamin, M., Bhattacharya, S., & Orense, R. P. (2017). Effect of initial relative density on the post-liquefaction behaviour of sand. Soil Dynamics and Earthquake Engineering, 97(September 2016), 25–36. https://doi.org/10.1016/j.soildyn.2017.02.007.

  • Sarkar, R., Bhattacharya, S., Maheshwari, B. K. (2014) Seismic requalification of pile foundations in liquefiable soils. https://doi.org/10.1007/s40098-014-0112-8.

  • Sitharam T, Govindaraju L, Sridharan, A (2004) Dynamic properties and liqefaction potential of soils. Current Science, 87(10), 1370–1378.

    Google Scholar 

  • Somerville, P. G., Smith, N. F., Graves, R. W., & Abrahamson, N. A. (1997). Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1), 199–222. https://doi.org/10.1785/gssrl.68.1.199.

    Article  Google Scholar 

  • Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of Geotechnical & Geoenvironmental Engineering, 117(1), 89–107.

    Article  Google Scholar 

  • Wang, S., Kutter, B. L., Chacko, J., Wilson, D. W., Boulanger, R. W., & Abghari, A. (1998). Nonlinear seismic soil-pile structure interaction. Earthquake Spectra, 14(2), 377–396.

    Article  Google Scholar 

  • Wilson, B. D. W., Member, A., Boulanger, R. W., & Kutter, B. L. (2000). Observed seismic lateral resistance of liquefying sand. Journal of Geotechnical & Geoenvironmental Engineering, 126(October), 898–906.

    Article  Google Scholar 

  • Zhang, J., Andrus, R. D., & Juang, C. H. (2005). Normalized shear modulus and material damping ratio relationships. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 453–464. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(453).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Murali Krishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dammala, P.K., Murali Krishna, A. (2023). Seismic Analysis of Pile Foundations Using an Integrated Approach. In: Sitharam, T.G., Jakka, R.S., Kolathayar, S. (eds) Advances in Earthquake Geotechnics. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-19-3330-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3330-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3329-5

  • Online ISBN: 978-981-19-3330-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics