Skip to main content

Treatment of Textile Wastewater by Nanoparticles

  • Chapter
  • First Online:
Textile Wastewater Treatment

Abstract

Rapid globalisation and industrialisation are leading towards huge production of anthropogenic synthetic products. Synthetic products contain many hazardous compound, exposure of these compounds result into changes in environment and living being. After the production, 10–15% are going as waste which are creating major issues for the environment. So, removal of compounds is major task for all industrialists. Nanotechnology plays major role in removal of hazardous compounds from wastewater. Nanoparticles are in small size playing enormous role in catalysis and removal of toxic compound. Synthesis of nanoparticles is carried out by physical, chemical and biological method. Biological approach for synthesis of nanoparticles plays enormous role in treatment. Biological approach is highly efficient, stable, economic and less detrimental for the environment. Still, metal and metal oxide-based nanoparticles are having toxic properties and are transformed into environment and disturb the whole ecosystem. Modification in treatment strategies is mandatory to increase efficiency. Numerous research work is carried out and still going on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

°C:

Degree Celsius

Kg:

Kilogram

%:

Percentage

mg/L:

Milligram per litre

nm:

Nanometer

Fe2O3 :

Iron (III) oxide

MgO:

Magnesium Oxide

ppm:

Parts per million

COD:

Chemical Oxygen Demand

BOD:

Biological Oxygen Demand

mW cm 2 :

Milliwatt per square centimetre

References

  1. Ahmed A, Usman M, Liu QY, Shen YQ, Yu B, Cong HL (2019) Plant mediated synthesis of copper nanoparticles by using Camelia sinensis leaves extract and their applications in dye degradation. Ferroelectrics 549(1):61–69. https://doi.org/10.1080/00150193.2019.1592544

    Article  CAS  Google Scholar 

  2. Aldhahri M, Almulaiky YQ, El-Shishtawy RM, Al-Shawafi WM, Salah N, Alshahrie A, Alzahrani HAH (2021) Ultra-thin 2D CuO nanosheet for HRP immobilization supported by encapsulation in a polymer matrix: characterization and dye degradation. Catal Lett 151(1):232–246. https://doi.org/10.1007/s10562-020-03289-7

    Article  CAS  Google Scholar 

  3. Ansari A, Mehrabian MA, Hashemipour H (2012) Zinc ion adsorption on carbon nanotubes in an aqueous solution. Pol J Chem Technol 14(3):29–37. https://doi.org/10.2478/v10026-012-0081-6

    Article  Google Scholar 

  4. Balaraman P, Balasubramanian B, Kaliannan D, Durai M, Kamyab H, Park S, Chelliapan S, Lee CT, Maluventhen V, Maruthupandia A (2020) Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and Its potential biological and environmental applications. Waste Biomass Valorization 11(10):5255–5271. https://doi.org/10.1007/s12649-020-01083-5

    Article  CAS  Google Scholar 

  5. Baruah D, Yadav RNS, Yadav A, Das AM (2019) Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. J Photochem Photobiol B Biol 201(October):111649. https://doi.org/10.1016/j.jphotobiol.2019.111649

  6. Berkani M, Bouchareb MK, Bouhelassa M, Kadmi Y (2020) Photocatalytic degradation of industrial dye in semi-pilot scale prototype solar photoreactor: optimization and modeling using ANN and RSM based on box-wilson approach. Top Catal 63(11–14):964–975. https://doi.org/10.1007/s11244-020-01320-0

    Article  CAS  Google Scholar 

  7. Bilal M, Rasheed T, Iqbal HMN, Hu H, Wang W, Zhang X (2018) Horseradish peroxidase immobilization by copolymerization into cross-linked polyacrylamide gel and its dye degradation and detoxification potential. Int J Biol Macromol 113(2017):983–990. https://doi.org/10.1016/j.ijbiomac.2018.02.062

    Article  CAS  Google Scholar 

  8. Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manag Assoc 55(6):708–746

    Article  CAS  Google Scholar 

  9. Cao XT, Showkat AM, Kim DW, Jeong YT, Kim JS, Lim KT (2015) Preparation of β-cyclodextrin multi-decorated halloysite nanotubes as a catalyst and nanoadsorbent for dye removal. J Nanosci Nanotechnol 15(11):8617–8621. https://doi.org/10.1166/jnn.2015.11482

    Article  CAS  Google Scholar 

  10. Chauhan A, Verma R, Kumari S, Sharma A, Shandilya P, Li X, Batoo KM, Imran A, Kulshrestha S, Kumar R (2020) Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep 10(1):1–16. https://doi.org/10.1038/s41598-020-64419-0

    Article  CAS  Google Scholar 

  11. Chavan A, Fulekar MH (2018) Integration of photocatalytic oxidation and biodegradation treatment processes to enhance degradation efficiency of CETP wastewater contaminants. Bionanoscience 8(3):761–768. https://doi.org/10.1007/s12668-018-0534-3

    Article  Google Scholar 

  12. Chen J, Sheng Y, Song Y, Chang M, Zhang X, Cui L, Meng D, Zhu H, Shi Z, Zou H (2018) Multimorphology mesoporous silica nanoparticles for dye adsorption and multicolor luminescence applications. ACS Sustain Chem Eng 6(3):3533–3545. https://doi.org/10.1021/acssuschemeng.7b03849

    Article  CAS  Google Scholar 

  13. Das S, Mahalingam H (2019) Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. J Environ Chem Eng 7(5):103289. https://doi.org/10.1016/j.jece.2019.103289

    Article  CAS  Google Scholar 

  14. Das S, Mahalingam H (2020) Novel immobilized ternary photocatalytic polymer film based airlift reactor for efficient degradation of complex phthalocyanine dye wastewater. J Hazard Mater 383(September 2019):121219. https://doi.org/10.1016/j.jhazmat.2019.121219

    Article  CAS  Google Scholar 

  15. Deng D, Lamssali M, Aryal N, Ofori-Boadu A, Jha MK, Samuel RE (2020) Textiles wastewater treatment technology: a review. Water Environ Res 92(10):1805–1810. https://doi.org/10.1002/wer.1437

    Article  CAS  Google Scholar 

  16. Desa AL, Hairom NHH, Ng L, Ng CY, Ahmad MK, Mohammad AW (2019) Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration. J Water Process Eng 31(January):100872. https://doi.org/10.1016/j.jwpe.2019.100872

    Article  Google Scholar 

  17. Du M, Cao S, Ye X, Ye J (2020) Recent advances in the fabrication of all-solid-state nanostructured TiO2 based Z-scheme heterojunctions for environmental remediation. J Nanosci Nanotechnol 20(9):5861–5873. https://doi.org/10.1166/jnn.2020.18719

    Article  CAS  Google Scholar 

  18. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekee TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB (2018) Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 12(6):857–863. https://doi.org/10.1049/iet-nbt.2017.0299

    Article  Google Scholar 

  19. Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen TI (2020) Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 6(9):e04896. https://doi.org/10.1016/j.heliyon.2020.e04896

    Article  CAS  Google Scholar 

  20. Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9:12944–12967. https://doi.org/10.1039/c8ra10483b

    Article  CAS  Google Scholar 

  21. Gahlout M, Rudakiya DM, Gupte S, Gupte A (2017) Laccase-conjugated amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 dye. Int Nano Lett 7(3):195–208. https://doi.org/10.1007/s40089-017-0215-1

    Article  CAS  Google Scholar 

  22. Ganguly S, Mondal S, Das P, Bhawal P, Das TK, Bose M, Choudhary S, Gangopadhyay S, Das AK, Das NC (2018) Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Struct Nano-Obj 16:86–95. https://doi.org/10.1016/j.nanoso.2018.05.002

    Article  CAS  Google Scholar 

  23. Ghaly AE, Ananthashankar R, Alhattab VVR, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Proc Technol 05(01):1–18. https://doi.org/10.4172/2157-7048.1000182

    Article  CAS  Google Scholar 

  24. Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Onco 37(3):209–230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009

    Article  Google Scholar 

  25. He J, Zhang Y, Zhang X, Huang Y (2018) Highly efficient Fenton and enzyme-mimetic activities of NH2-MIL-88B(Fe) metal organic framework for methylene blue degradation. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-018-23557-2

    Article  CAS  Google Scholar 

  26. Jain K, Patel AS, Pardhi VP, Jeet S, Flora S (2021) Nanotechnology in wastewater management: a new paradigm towards wastewater treatment. Molecules 26:1–26. https://doi.org/10.3390/molecules26061797

    Article  CAS  Google Scholar 

  27. Jain S, Panigrahi A, Sarma TK (2019) Counter anion-directed growth of iron oxide nanorods in a polyol medium with efficient peroxidase-mimicking activity for degradation of dyes in contaminated water. ACS Omega 4(8):13153–13164. https://doi.org/10.1021/acsomega.9b01201

    Article  CAS  Google Scholar 

  28. Jeon TH, Koo MS, Kim H, Choi W (2018) Dual-functional photocatalytic and photoelectron catalytic systems for energy- and resource-recovering water treatment. ACS Catal 8(12):11542–11563. https://doi.org/10.1021/acscatal.8b03521

    Article  CAS  Google Scholar 

  29. Joshi SJ, Geetha SJ, Al-Mamari S, Al-Azkawi A (2018) Green synthesis of silver nanoparticles using pomegranate peel extracts and its application in photocatalytic degradation of methylene blue. Jundishapur. J. Nat. Pharm. Prod 13(3):4. https://doi.org/10.5812/jjnpp.67846

    Article  CAS  Google Scholar 

  30. Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 3:48–55. https://doi.org/10.1016/j.onano.2018.06.001

    Article  Google Scholar 

  31. Kalra A, Gupta A (2020) Materials today: proceedings recent advances in decolourization of dyes using iron nanoparticles: a mini review. Mater Today. https://doi.org/10.1016/j.matpr.2020.04.677

    Article  Google Scholar 

  32. Khan NA, Khan SU, Ahmed S, Farooqi IH, Dhingra A, Hussain A, Changani F (2019) Applications of nanotechnology in water and wastewater treatment: a review. Asian J Water Environ Pollut 16(4):81–86. https://doi.org/10.3233/AJW190051

    Article  Google Scholar 

  33. Klunk M, Dasgupta S, Das M, Cunha MG, Wander PR (2019) Synthesis of sodalite zeolite and adsorption study of crystal violet dye. ECS J Solid State Sci Technol 8(10):N144–N150. https://doi.org/10.1149/2.0131910jss

    Article  CAS  Google Scholar 

  34. Kucuk AC, Urucu OA (2019) Silsesquioxane-modified chitosan nanocomposite as a nanoadsorbent for the wastewater treatment. React Funct Polym 140(April):22–30. https://doi.org/10.1016/j.reactfunctpolym.2019.04.011

    Article  CAS  Google Scholar 

  35. Lee KY, Kim KW, Park M, Kim J, Oh M, Lee EH, Chung DY, Moon JK (2016) Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res 95:134–141. https://doi.org/10.1016/j.watres.2016.02.052

    Article  CAS  Google Scholar 

  36. Li JF, Rupa EJ, Hurh J, Huo Y, Chen L, Han Y, Ahn JC, Park JK, Lee HA, Mathiyalagan R, Yang DC (2019) Cordyceps militaris fungus mediated Zinc Oxide nanoparticles for the photocatalytic degradation of methylene blue dye. Optik 183:691–697. https://doi.org/10.1016/j.ijleo.2019.02.081

    Article  CAS  Google Scholar 

  37. Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151(1):239–246. https://doi.org/10.1016/j.jhazmat.2007.05.078

    Article  CAS  Google Scholar 

  38. Mahmoud HR, El-Molla SA, Saif M (2013) Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater. Powder Technol 249:225–233. https://doi.org/10.1016/j.powtec.2013.08.021

    Article  CAS  Google Scholar 

  39. Momin B, Rahman S, Jha N, Annapure US (2019) Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess Biosyst Eng 42(4):541–553. https://doi.org/10.1007/s00449-018-2057-2

    Article  CAS  Google Scholar 

  40. Nadaf NY, Kanase SS (2016) Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem 12(8):4806–4814. https://doi.org/10.1016/j.arabjc.2016.09.020

    Article  CAS  Google Scholar 

  41. Nazari N, Jookar Kashi F (2020) A novel microbial synthesis of silver nanoparticles: Its bioactivity, Ag/Ca-Alg beads as an effective catalyst for decolorization Disperse Blue 183 from textile industry effluent. Sep Purif Technol 259:118117. https://doi.org/10.1016/j.seppur.2020.118117

    Article  CAS  Google Scholar 

  42. Nikam AV, Prasad BLV, Kulkarni AA (2018) Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20(35):5091–5107. https://doi.org/10.1039/C8CE00487K

    Article  CAS  Google Scholar 

  43. Noman M, Shahid M, Ahmed T, Niazi MBK, Hussain S, Song F, Manzoor I. (2020) Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ Pollut 257. https://doi.org/10.1016/j.envpol.2019.113514

  44. Nordin N, Ho LN, Ong SA, Ibrahim AH, Abdul Rani AL, Lee SL, Ong YP (2020) Hydroxyl radical formation in the hybrid system of photocatalytic fuel cell and peroxi-coagulation process affected by iron plate and UV light. Chemosphere 244:125459. https://doi.org/10.1016/j.chemosphere.2019.125459

    Article  CAS  Google Scholar 

  45. Nordin N, Ho LN, Ong SA, Ibrahim AH, Wong YS, Lee SL, Oon YS, Oon YL (2017) Influence of Amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process. Environ Sci Pollut Res 24(29):23331–23340. https://doi.org/10.1007/s11356-017-9964-7

    Article  CAS  Google Scholar 

  46. Nordmeier A, Merwin A, Roeper DF, Chidambaram D (2018) Microbial synthesis of metallic molybdenum nanoparticles. Chemosphere 203:521–525. https://doi.org/10.1016/j.chemosphere.2018.02.079

    Article  CAS  Google Scholar 

  47. Pandey S, Mandari KK, Kim J, Kang M, Fosso‐Kankeu E (2020) Recent advancement in visible‐light‐responsive photocatalysts in heterogeneous photocatalytic water treatment technology. In: Photocatalysts in advanced oxidation processes for wastewater treatment, pp 167–196. https://doi.org/10.1002/9781119631422.ch6

  48. Rafique M, Sadaf I, Tahir MB, Rafique MS, Nabi G, Iqbal T, Sughra K (2019) Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater Sci Eng C 99:1313–1324. https://doi.org/10.1016/j.msec.2019.02.059

    Article  CAS  Google Scholar 

  49. Rafique M, Tahir R, Gillani SSA, Tahir MB, Shakil M, Iqbal T, Abdellahi MO (2020) Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium Cumini for seed germination and wastewater purification. Int J Environ Anal Chem 1–16:23–38. https://doi.org/10.1080/03067319.2020.1715379

    Article  CAS  Google Scholar 

  50. Raja A, Ashokkumar S, Pavithra Marthandam R, Jayachandiran J, Khatiwada C, Kaviyarasu K, Ganapathi Raman R, Swaminathan M (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B Biol 181(2017):53–58. https://doi.org/10.1016/j.jphotobiol.2018.02.011

  51. Rajkumar R, Ezhumalai G, Gnanadesigan M (2021) A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environ Technol Innov 21:101282. https://doi.org/10.1016/j.eti.2020.101282

    Article  CAS  Google Scholar 

  52. Rambabu K, Bharath G, Monash P, Velu BF, Naushad M, Arthanareeswaran G, Loke Show P (2019) Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process Saf Environ Prot 124:266–278. https://doi.org/10.1016/j.psep.2019.02.015

    Article  CAS  Google Scholar 

  53. Ranjbar PZ, Ayati B, Ganjidoust H (2019) Kinetic study on photocatalytic degradation of Acid Orange 52 in a baffled reactor using TiO2 nanoparticles. J Environ Sci 79:213–224. https://doi.org/10.1016/j.jes.2018.06.012

    Article  Google Scholar 

  54. Rasheed T, Nabeel F, Bilal M, Iqbal HMN (2019) Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal Agric Biotechnol 19:101154. https://doi.org/10.1016/j.bcab.2019.101154

    Article  Google Scholar 

  55. Rashidi HR, Sulaiman NMN, Hashim NA, Hassan CRC, Ramli MR (2015) Synthetic reactive dye wastewater treatment by using nano-membrane filtration. Desalination Water Treat 55(1):86–95. https://doi.org/10.1080/19443994.2014.912964

    Article  CAS  Google Scholar 

  56. Roy A, Bhattacharya J (2019) Nanotechnology in industrial wastewater treatment. IWA Publishing

    Google Scholar 

  57. Salem S, Fouda A (2020) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199(1):344–370

    Article  Google Scholar 

  58. Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40. https://doi.org/10.1016/j.btre.2017.02.006

    Article  Google Scholar 

  59. Sengul AB, Asmatulu E (2020) Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett 18(5):1659–1683. https://doi.org/10.1007/s10311-020-01033-6

    Article  CAS  Google Scholar 

  60. Shahi MP, Kumari P, Mahobiya D, Shahi SK (2021) Chapter 4—nano-bioremediation of environmental contaminants: applications, challenges, and future prospects. In: Bioremediation for environmental sustainability. Elsevier B.V. https://doi.org/10.1016/B978-0-12-820318-7/00004-6

  61. Shayegan Mehr E, Sorbiun M, Ramazani A, Taghavi Fardood S (2018) Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boimass extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J Mater Sci Mater Electron 29(2):1333–1340. https://doi.org/10.1007/s10854-017-8039-3

    Article  CAS  Google Scholar 

  62. Shukla P (2020) Microbial nanotechnology for bioremediation of industrial wastewater. Front Microbiol 11(November). https://doi.org/10.3389/fmicb.2020.590631

  63. Singh KK, Senapati KK, Sarma KC (2017) Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution. J Environ Chem Eng 5(3):2214–2221. https://doi.org/10.1016/j.jece.2017.04.022

    Article  CAS  Google Scholar 

  64. Sivalingam S, Sen S (2019) Efficient removal of textile dye using nanosized fly ash derived zeolite-x: kinetics and process optimization study. J Taiwan Inst Chem Eng 96:305–314. https://doi.org/10.1016/j.jtice.2018.10.032

    Article  CAS  Google Scholar 

  65. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143. https://doi.org/10.1016/j.carbon.2015.04.043

    Article  CAS  Google Scholar 

  66. Srivastava N, Mukhopadhyay M (2014) Biosynthesis of SnO2 nanoparticles using bacterium erwinia herbicola and their photocatalytic activity for degradation of dyes. Ind Eng Chem Res 53(36):13971–13979. https://doi.org/10.1021/ie5020052

    Article  CAS  Google Scholar 

  67. Sundar KP, Kanmani S (2020) Progression of photocatalytic reactors and it’s comparison: a review. Chem Eng Res Des 154:135–150. https://doi.org/10.1016/j.cherd.2019.11.035

    Article  CAS  Google Scholar 

  68. Tran TT, Van Kumar SR, Lue SJ (2019) Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: donnan effect and intermolecular interaction. J Membr Sci 575:38–49. https://doi.org/10.1016/j.memsci.2018.12.070

    Article  CAS  Google Scholar 

  69. Varadavenkatesan T, Lyubchik E, Pai S, Pugazhendhi A, Vinayagam R, Selvaraj R (2019) Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. J Photochem Photobiol B Biol 199:111621. https://doi.org/10.1016/j.jphotobiol.2019.111621

  70. Vinayagam R, Selvaraj R, Arivalagan P, Varadavenkatesan T (2020) Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J Photochem Photobiol B Biol 203:111760. https://doi.org/10.1016/j.jphotobiol.2019.111760

  71. Wang H, Zhou A, Peng F, Yu H, Yang J (2007) Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J Colloid Interface Sci 316(2):277–283. https://doi.org/10.1016/j.jcis.2007.07.075

    Article  CAS  Google Scholar 

  72. Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B, Hua Y (2020) Functionalized gold and Silver bimetallic nanoparticles using Deinococcus radiodurans protein extract mediate degradation of toxic dye malachite green. Int J Nanomed 15:1823–1835. https://doi.org/10.2147/IJN.S236683

    Article  CAS  Google Scholar 

  73. Yadav P, Manjunath H, Selvara R (2019) Antibacterial and dye degradation potential of zero-valent silver nanoparticles synthesised using the leaf extract of Spondias dulcis. IET Nanobiotechnol 13(1):84–89. https://doi.org/10.1049/iet-nbt.2018.5058

    Article  Google Scholar 

  74. Yulizar Y, Sudirman Apriandanu DOB, Wibowo AP (2019) Plant extract mediated synthesis of Au/TiO2 nanocomposite and its photocatalytic activity under sodium light irradiation. Compos Commun 16(May):50–56. https://doi.org/10.1016/j.coco.2019.08.006

    Article  Google Scholar 

  75. Zhang J, Guo W, Li Q, Wang Z, Liu S (2018) The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ Sci Nano 5(11):2482–2499. https://doi.org/10.1039/c8en00688a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vithalani, P., Mahla, P., Bhatt, N. (2022). Treatment of Textile Wastewater by Nanoparticles. In: Muthu, S.S., Khadir, A. (eds) Textile Wastewater Treatment. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2852-9_1

Download citation

Publish with us

Policies and ethics