Skip to main content

Environmental Impact of Sensing Devices

  • Chapter
  • First Online:
Smart Nanostructure Materials and Sensor Technology

Abstract

Environmental sensing is becoming an important segment across the geographical globe even beyond. That can be important tool for primary alarming indicator for saving millions of lives in the world. Impact of sensing devices is playing key role in understanding; as a result, we stand a better chance of improving and keeping our impact to a minimum. The obvious benefits of environmental monitoring include pollution reduction, occupational disease reduction, and also minimizing the impact of human activities. Perhaps, the biggest advancement that environmental sensing will make in the future is that smart sensors will be implemented in order to monitor the natural gas infrastructure. Here, we will be discussing some of the most innovative ways in which smart sensors are used to reduce the strain on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Comini, Achievements and challenges in sensor devices. Front. Sens. 7 (2021)

    Google Scholar 

  2. M.J. McGrath, C.N. Scanaill, Sensing and sensor fundamentals, in Sensor Technologies (Apress, Berkeley, CA, 2013), pp. 15–50

    Google Scholar 

  3. J.F. Artiola, I.L. Pepper, M.L. Brusseau, in 1 - Monitoring and Characterization of the Environment. eds. by J.F. Artiola, I.L. Pepper, M.L. Brusseau. Environmental monitoring and characterization (Academic Press, 2004), pp. 1–9. https://doi.org/10.1016/B978-012064477-3/50003-5

  4. P. Teillet, R. Gauthier, A. Chichagov, G. Fedosejevs, Towards integrated earth sensing: the role of in situ sensing. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 34(1), 249–254 (2002)

    Google Scholar 

  5. S. Sirsikar, P. Karemore, Review paper on air pollution monitoring system. Ijarcce 4(1), 218–220 (2015). https://doi.org/10.17148/ijarcce.2015.4147

  6. D. Singh, M. Dahiya, R. Kumar, C. Nanda, Sensors and systems for air quality assessment monitoring and management: a review. J. Environ. Manage. 289(March), 112510 (2021). https://doi.org/10.1016/j.jenvman.2021.112510

  7. F. Jan, N. Min-Allah, D. Düştegör, Iot based smart water quality monitoring: recent techniques, trends and challenges for domestic applications. Water (Switzerland) 13(13), 1–37 (2021). https://doi.org/10.3390/w13131729

  8. V. Trangadiya, A. Tripathi, Various soil moisture sensors used in agriculture: an overview. 9(2), 34–37 (2018)

    Google Scholar 

  9. S. Sukamta, S. Sunardiyo, F. Ambarwati, Prototype of temperature, humidity and soil pH measurement as a analysis tool soil resistance in grounding system. Eic 2018, 370–374 (2020). https://doi.org/10.5220/0009011503700374

  10. L.C. Gavade, A. Bhoi, N, P, K detection & control for agriculture applications using pic controller: a review. Int. J. Eng. Res. Technol. (IJERT) 6(04), 638–641 (2017)

    Google Scholar 

  11. C. Tortolini, F. Mazzei, L. Carlucci, Electrochemical biosensors for environmental monitoring. Int. J. Environ. Health 6(2), 93–110 (2012)

    Article  Google Scholar 

  12. W. Moujahid, P. Eichelmann-Daly, J. Strutwolf, V.I. Ogurtsov, G. Herzog, D.W.M. Arrigan, Microelectrochemical systems on silicon chips for the detection of pollutants in seawater. Electroanalysis 23(1), 147–155 (2011)

    Google Scholar 

  13. I. Douglas, A. Donato, N. Haritos, Experimental observation of forklift-induced vibrations on a PSC floor, in Australian Earthquake Engineering Society 2014 Conference, AEES, Lorne, Australian, pp. 1–11 (2014)

    Google Scholar 

  14. C. Shen, C. Wen, X. Huang, X. Long, A versatile multiple-pass Raman system for industrial trace gas detection. Sensors 21(21), 7173 (2021)

    Article  ADS  Google Scholar 

  15. G. Korotcenkov, Handbook of gas sensor materials. Conventional Approaches 1 (2013)

    Google Scholar 

  16. M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, Z. Stamenkovic. Semiconductor gas sensors: materials, technology, design, and application. Sensors 20(22), 6694 (2020)

    Google Scholar 

  17. P. Mehrotra, Biosensors and their applications—a review. J. Oral Biol. Craniofac. Res. 6(2), 153–159 (2016)

    Article  Google Scholar 

  18. P. Bhalla, N. Singh, Generalized Drude scattering rate from the memory function formalism: an independent verification of the Sharapov-Carbotte result. European Phys. J. B 89(2), 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  19. H.A. Alhadrami, Biosensors: classifications, medical applications, and future prospective. Biotechnol. Appl. Biochem. 65(3), 497–508 (2018)

    Article  Google Scholar 

  20. L.T. Bereza-Malcolm, G. Mann, A.E. Franks, Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth. Biol. 4(5), 535–546 (2015)

    Google Scholar 

  21. N. Verma, A. Bhardwaj, Biosensor technology for pesticides—a review. Appl. Biochem. Biotechnol. 175(6), 3093–3119 (2015)

    Article  Google Scholar 

  22. B. Bucur, F.-D. Munteanu, J.-L. Marty, A. Vasilescu, Advances in enzyme-based biosensors for pesticide detection. Biosensors 8(2), 27 (2018)

    Article  Google Scholar 

  23. S. Hassani, S. Momtaz, F. Vakhshiteh, A.S. Maghsoudi, M.R. Ganjali, P. Norouzi, M. Abdollahi, Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol. 91, (1) 109–130 (2017)

    Google Scholar 

  24. P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis, L. Hens, Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front. Public Health 4, 148 (2016)

    Article  Google Scholar 

  25. P.J. Mehrotra, Biosensors and their applications–a review. J. Oral Biol. Craniofac. Res. 6(2), 153–159 (2016)

    Google Scholar 

  26. M. Trojanowicz, M.L. Hitchman, Determination of pesticides using electrochemical biosensors. TrAC, Trends Anal. Chem. 15(1), 38–45 (1996)

    Article  Google Scholar 

  27. M. Campàs, B. Prieto-Simón, J.-L. Marty, A review of the use of genetically engineered enzymes in electrochemical biosensors, in Seminars in cell & developmental biology, vol. 20, no. 1 (Academic Press, 2009), pp. 3–9

    Google Scholar 

  28. E. Valera, D. Muñiz, Á. Rodríguez, Fabrication of flexible interdigitated μ-electrodes (FIDμEs) for the development of a conductimetric immunosensor for atrazine detection based on antibodies labelled with gold nanoparticles. Microelectron. Eng. 87(2), 167–173 (2010)

    Article  Google Scholar 

  29. E. Valera, J. Ramón-Azcón, F.-J. Sanchez, M.-P. Marco, Á. Rodríguez, Conductimetric immunosensor for atrazine detection based on antibodies labelled with gold nanoparticles, Sens. Actuators, B: Chem. 134(1), 95–103 (2008)

    Google Scholar 

  30. E. Valera, J. Ramón-Azcón, A. Barranco, B. Alfaro, F. Sánchez-Baeza, M.-P. Marco, Á. Rodríguez, Determination of atrazine residues in red wine samples. A conductimetric solution. Food Chem. 122(3), 888–894 (2010)

    Google Scholar 

  31. X. Jiang, D. Li, X. Xia, Y. Ying, Y. Li, Z. Ye, J. Wang, Immunosensors for detection of pesticide residues. Biosens. Bioelectron. 23(11), 1577–1587 (2008)

    Article  Google Scholar 

  32. C. Barzen, A. Brecht, G. Gauglitz, Optical multiple-analyte immunosensor for water pollution control. Biosens. Bioelectron. 17(4), 289–295 (2002)

    Article  Google Scholar 

  33. E. Mallat, D. Barcelo, C. Barzen, G. Gauglitz, R. Abuknesha, Immunosensors for pesticide determination in natural waters. TrAC, Trends Anal. Chem. 20(3), 124–132 (2001)

    Article  Google Scholar 

  34. M. Pohanka, Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11(3), 448 (2018)

    Article  ADS  Google Scholar 

  35. P. Skladal, J. Horáček, M. Malina, Direct piezoelectric immunosensors for pesticides, in Biosensors for Direct Monitoring of Environmental Pollutants in Field (Springer, Dordrecht, 1998), pp. 145–153

    Google Scholar 

  36. A.M. Nowicka, A. Kowalczyk, Z. Stojek, M. Hepel, Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophys. Chem. 146(1), 42–53 (2010)

    Article  Google Scholar 

  37. H.S. Peavy, D.R. Rowe, G. Tchobanoglous, Environmental engineering, vol. 2985 (McGraw-Hill, New York, 1985)

    Google Scholar 

  38. S. Rodriguez-Mozaz, M.P. Marco, M.L. De Alda, D. Barceló, Biosensors for environmental applications: Future development trends. Pure Appl. Chem. 76(4), 723–752 (2004)

    Article  Google Scholar 

  39. T. Rasheed, M. Bilal, F. Nabeel, H.M.N. Iqbal, C. Li, Y. Zhou, Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci. Total Environ. 615, 476–485 (2018)

    Google Scholar 

  40. H.-C. Tsai, R.-a Doong, Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor. Biosens. Bioelectron. 20(9), 1796–1804 (2005)

    Article  Google Scholar 

  41. I.A. Veselova, T.N. Shekhovtsova, Determination of organomercury compounds using horseradish peroxidase immobilised on a polyurethane foam. Mendeleev Commun. 9(6), 248–250 (1999)

    Article  Google Scholar 

  42. I. Bontidean, A. Mortari, S. Leth, N.L. Brown, U. Karlson, M.M. Larsen, J. Vangronsveld, P. Corbisier, E. Csöregi, Biosensors for detection of mercury in contaminated soils. Environ. Pollut. 131(2), 255–262 (2004)

    Article  Google Scholar 

  43. I. Bontidean, J. Ahlqvist, A. Mulchandani, W. Chen, W. Bae, R.K. Mehra, A. Mortari, E. Csöregi, Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens. Bioelectron. 18(5–6), 547–553 (2003)

    Article  Google Scholar 

  44. D.J. Blake, R. Nawrotzki, M.F. Peters, S.C. Froehner, K.E. Davies, Isoform diversity of dystrobrevin, the Murine 87-kDa postsynaptic protein (∗). J. Biol. Chem. 271(13), 7802–7810 (1996)

    Article  Google Scholar 

  45. M. Khosraviani, A.R. Pavlov, G.C. Flowers, D.A. Blake, Detection of heavy metals by immunoassay: optimization and validation of a rapid, portable assay for ionic cadmium. Environ. Sci. Technol. 32(1), 137–142 (1998)

    Article  ADS  Google Scholar 

  46. C.A. Corcoran, G.A. Rechnitz, Cell-based biosensors. Trends Biotechnol. 3(4), 92–96 (1985)

    Article  Google Scholar 

  47. K. Riedel, G. Kunze, A. König, Microbial sensors on a respiratory basis for wastewater monitoring. Hist. Trends Bioprocess. Biotransform. 81–118 (2002)

    Google Scholar 

  48. A. Yamasaki, M.Â.S.D.A. Cunha, J.A.B.P. Oliveira, A.C. Duarte, M.T.S.R. Gomes, Assessment of copper toxicity using an acoustic wave sensor. Biosens. Bioelectron. 19(10), (2004): 1203–1208.

    Google Scholar 

  49. S. Tauriainen, M. Karp, W. Chang, M. Virta, Luminescent bacterial sensor for cadmium and lead. Biosens. Bioelectron. 13(9), 931–938 (1998)

    Article  Google Scholar 

  50. P. Corbisier, D. Van Der Lelie, B. Borremans, A. Provoost, V. De Lorenzo, N.L. Brown, J.R. Lloyd, et al., Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal. Chim. Acta 387(3), 235–244 (1999)

    Google Scholar 

  51. T.L. Pitt, M.R. Barer, Classification, identification and typing of micro-organisms. Med. Microbiol. 24, (2012)

    Google Scholar 

  52. O.I. Guliy, B.D. Zaitsev, O.S. Larionova, I.A. Borodina, Virus detection methods and biosensor technologies. Biophysics 64(6), 890–897 (2019)

    Article  Google Scholar 

  53. U. Farooq, Q. Yang, M.W. Ullah, S. Wang, Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens. Bioelectron. 118, 204–216 (2018)

    Google Scholar 

  54. M.S. Cheng, J.S. Ho, C.H. Tan, J.P.S. Wong, L.C. Ng, C.-S. Toh, Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus. Anal. Chim. Acta 725, 74–80 (2012)

    Google Scholar 

  55. A. Solaimuthu, A.N. Vijayan, P. Murali, P.S. Korrapati, Nano-biosensors and their relevance in tissue engineering. Current Opin. Biomed. Eng. 13, 84–93 (2020)

    Google Scholar 

  56. W.-J. Jeong, S.-H. Choi, H.-S. Lee, Y.-B. Lim, A fluorescent supramolecular biosensor for bacterial detection via binding-induced changes in coiled-coil molecular assembly. Sens. Actuators, B Chem. 290, 93–99 (2019)

    Article  Google Scholar 

  57. A. Jebelli, F. Oroojalian, F. Fathi, A. Mokhtarzadeh, M. Guardia, Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron. 1(169), 112599 2020. https://doi.org/10.1016/j.bios.2020.112599. Epub 2020 Sep 6. PMID: 32931990

  58. B.D. Gupta, R. Kant, Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt. Laser Technol. 101, 144–161 (2018)

    Article  ADS  Google Scholar 

  59. K. Özdemir, The use of carbon nanomaterials for removing natural organic matter in drinking water sources by a combined coagulation process. Nanomater. Nanotechnol. 6, 1847980416663680 (2016)

    Article  Google Scholar 

  60. S. Samanman, P. Kanatharana, W. Chotigeat, P. Deachamag, P. Thavarungkul, Highly sensitive capacitive biosensor for detecting white spot syndrome virus in shrimp pond water. J. Virol. Methods 173(1), 75–84 (2011)

    Article  Google Scholar 

  61. J. Kochana, P. Nowak, A. Jarosz-Wilkołazka, M. Bieroń, Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds. Microchem. J. 89(2), 171–174 (2008)

    Article  Google Scholar 

  62. R. Badıa, M.E. Dı́az Garcı́a, Room temperature phosphorescence flow-through biosensing of anionic surfactants. Anal. Chim. Acta 371(1), 73–80 (1998)

    Google Scholar 

  63. L. Taranova, I. Semenchuk, T. Manolov, P. Iliasov, A. Reshetilov, Bacteria-degraders as the base of an amperometric biosensor for detection of anionic surfactants. Biosens. Bioelectron. 17(8), 635–640 (2002)

    Google Scholar 

  64. A.N. Reshetilov, I.N. Semenchuk, P.V. Iliasov, L.A. Taranova, The amperometric biosensor for detection of sodium dodecyl sulfate. Anal. Chim. Acta 347(1–2), 19–26 (1997)

    Article  Google Scholar 

  65. F. Arduini, S. Guidone, A. Amine, G. Palleschi, D. Moscone, Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens. Actuators, B Chem. 179, 201–208 (2013)

    Article  Google Scholar 

  66. F. Arduini, M. Forchielli, A. Amine, D. Neagu, I. Cacciotti, F. Nanni, D. Moscone, G. Palleschi, Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim. Acta 182(3), 643–651 (2015)

    Article  Google Scholar 

  67. L. Guo, Z. Li, H. Chen, W. Yarong, L. Chen, Z. Song, T. Lin, Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal. Chim. Acta 967, 59–63 (2017)

    Article  Google Scholar 

  68. X. Liu, W.-J. Li, L. Li, Y. Yang, L.-G. Mao, Z. Peng, A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sens. Actuators, B Chem. 191, 408–414 (2014)

    Article  Google Scholar 

  69. J. Parellada, A. Narvaez, M.A. Lopez, E. Domınguez, J.J. Fernandez, V. Pavlov, I. Katakis, Amperometric immunosensors and enzyme electrodes for environmental applications. Anal. Chim. Acta 362(1), 47–57 (1998)

    Article  Google Scholar 

  70. G.S. Nunes, J.A.P. Lins, F.G.S. Silva, L.C. Araujo, F.E.P.S. Silva, C.D. Mendonça, M. Badea, A. Hayat, J.-L. Marty, Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem. Chemosphere 111, 623–630 (2014)

    Google Scholar 

  71. A. Mishra, J. Kumar, J.S. Melo, An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles. Biosens. Bioelectron. 87, 332–338 (2017)

    Google Scholar 

  72. T.M.B.F. Oliveira, M.F. Barroso, S. Morais, P. de Lima-Neto, A.N.C. M.B.P.P. Oliveira, C. Delerue-Matos, Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106, 137–143 (2013)

    Google Scholar 

  73. Y. Chai, X. Niu, C. Chen, H. Zhao, M. Lan, Carbamate insecticide sensing based on acetylcholinesterase/Prussian blue-multi-walled carbon nanotubes/screen-printed electrodes. Anal. Lett. 46(5), 803–817 (2013)

    Article  Google Scholar 

  74. M. Meusel, D. Trau, A. Katerkamp, F. Meier, R. Polzius, K. Cammann, New ways in bioanalysis—one-way optical sensor chip for environmental analysis. Sens. Actuators, B Chem. 51(1–3), 249–255 (1998)

    Article  Google Scholar 

  75. M. Minunni, P. Skládal, M. Mascini, A piezoelectric quartz crystal biosensor as a direct affinity sensor. Anal. Lett. 27(8), 1475–1487 (1994)

    Article  Google Scholar 

  76. F. Long, A. Zhu, H. Shi, H. Wang, J. Liu, Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci. Rep. 3(1), 1–7 (2013)

    Google Scholar 

  77. X. Yang, Y. He, X. Wang, R. Yuan, A SERS biosensor with magnetic substrate CoFe2O4@ Ag for sensitive detection of Hg2+. Appl. Surf. Sci. 416, 581–586 (2017)

    Article  ADS  Google Scholar 

  78. L. Shi, Y. Wang, Y. Zhenyu Chu, D.J. Yin, J. Luo, S. Ding, W. Jin, A highly sensitive and reusable electrochemical mercury biosensor based on tunable vertical single-walled carbon nanotubes and a target recycling strategy. J. Mater. Chem. B 5(5), 1073–1080 (2017)

    Article  Google Scholar 

  79. H.-C. Tsai, R.-A. Doong, H.-C. Chiang, K.-T. Chen, Sol–gel derived urease-based optical biosensor for the rapid determination of heavy metals. Anal. Chim. Acta 481(1), 75–84 (2003)

    Article  Google Scholar 

  80. R. Ilangovan, D. Daniel, A. Krastanov, C. Zachariah, R. Elizabeth, Enzyme based biosensor for heavy metal ions determination. Biotechnol. Biotechnol. Equip. 20(1), 184–189 (2006)

    Article  Google Scholar 

  81. M.R. Guascito, C. Malitesta, E. Mazzotta, A. Turco, Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: study of the effect of hydrogen peroxide decomposition. Sens. Actuators, B Chem. 131(2), 394–402 (2008)

    Google Scholar 

  82. M.E. Ghica, R.C. Carvalho, A. Amine, C.M.A. Brett, Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt or copper hexacyanoferrate. Sens. Actuators, B Chem. 178, 270–278 (2013)

    Google Scholar 

  83. I. Bontidean, J.R. Lloyd, J.L. Hobman, J.R. Wilson, E. Csöregi, B. Mattiasson, N.L. Brown, Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J. Inorg. Biochem. 79(1–4), 225–229 (2000)

    Article  Google Scholar 

  84. S. Eissa, H.A. Alhadrami, M. Al-Mozaini, A.M. Hassan, M. Zourob, Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen. Microchim. Acta 188(6), 1–10 (2021)

    Article  Google Scholar 

  85. M.J. Dennison, A.P.F. Turner, Biosensors for environmental monitoring. Biotechnol. Adv. 13(1), 1–12 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. C. Sonkar or B. C. Koner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, S. et al. (2022). Environmental Impact of Sensing Devices. In: Sonker, R.K., Singh, K., Sonkawade, R. (eds) Smart Nanostructure Materials and Sensor Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2685-3_6

Download citation

Publish with us

Policies and ethics