Skip to main content

Perovskite-Based Gas Sensors

  • Chapter
  • First Online:
Smart Nanostructure Materials and Sensor Technology

Abstract

The optical, physical, biological, electrical, and optoelectronic features of perovskites make them fascinating materials. They are a viable contender for a variety of applications because of their unusual sensitivity, selectivity, and long-term stability. The various structures and their properties are explained in this chapter. It also explains the various sensing mechanism that are responsible for the adsorption of various kinds of gas molecules. The significant potential for sensor applications is suggested by their outstanding hydration–dehydration, electronic transition, adsorption–desorption, phase transition, and ion intercalation–declaration. In both solid and solution phases, several perovskite nanomaterial-based devices have been proven to offer exceptional sensing capabilities to diverse chemical and biological species. This chapter discusses the structure of perovskite, its synthesis, and the manufacture of useful sensors, as well as their applications in temperature, humidity, and gas sensing. Finally, using real-time demonstration, we outline the viewpoints and propose realistic directions for the future development of innovative perovskite nanostructure-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.J. BelBruno, Nanomaterials in sensors. Nanomaterials (Basel) 3(4), 572–573 (2013)

    Article  Google Scholar 

  2. A. Chen, S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42(12), 5425–5438 (2013)

    Article  Google Scholar 

  3. P. Prosposito, L. Burratti, I. Venditti, Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors 8(2), 26 (2020)

    Article  Google Scholar 

  4. W. Chansuvarn, T. Tuntulani, A. Imyim, Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC Trends Anal. Chem. 65, 83–96 (2015)

    Article  Google Scholar 

  5. M. Shellaiah, K.W. Sun, Luminescent metal nanoclusters for potential chemosensor applications. Chemosensors 5(4), 36 (2017)

    Article  Google Scholar 

  6. B. Wang, U. Akiba, J.-I. Anzai, Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: a review. Molecules 22(7), (2017)

    Google Scholar 

  7. Rahul, et al., Perovskite sensitized solar cell using solid polymer electrolyte. Int. J. Hydrogen Energy 41(4), 2847–2852 (2016)

    Google Scholar 

  8. Rahul, et al., Less toxic tin incorporated perovskite solar cell using polymer electrolyte processed in the air. Optik 169, 166–171 (2018)

    Google Scholar 

  9. Rahul, et al., New class of lead free perovskite material for low-cost solar cell application. Mater. Res. Bull. 97, 572–577 (2018)

    Google Scholar 

  10. Rahul, et al., Effect of crystal and powder of CH3NH3I on the CH3NH3PbI3 based perovskite sensitized solar cell. Mater. Res. Bull. 89, 292–296 (2017)

    Google Scholar 

  11. Rahul, et al., Encompassing environment synthesis, characterization and photovoltaic utilization of cadmium sulphide quantum dots. Mater. Today Proc. 34, 767–770 (2021)

    Google Scholar 

  12. A.V. Nikonov, et al., A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian J. Phys. Funct. Mater. (2018)

    Google Scholar 

  13. D. Wang, X. Chu, M. Gong, Single-crystalline LaFeO3 nanotubes with rough tube walls: synthesis and gas-sensing properties. Nanotechnology 17(21), 5501 (2006)

    Article  ADS  Google Scholar 

  14. L. Sun et al., Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application. Mater. Chem. Phys. 125(1–2), 305–308 (2011)

    Article  Google Scholar 

  15. S. Palimar et al., Investigation of Ca substitution on the gas sensing potential of LaFeO3 nanoparticles towards low concentration SO2 gas. Dalton Trans. 45(34), 13547–13555 (2016)

    Article  Google Scholar 

  16. T. Zhou et al., Constructing p–n heterostructures for efficient structure–driven ethanol sensing performance. Sens. Actuators, B Chem. 255, 745–753 (2018)

    Article  Google Scholar 

  17. J. Casanova-Cháfer et al., Gas sensing properties of perovskite decorated graphene at room temperature. Sensors 19(20), 4563 (2019)

    Article  ADS  Google Scholar 

  18. X. Zhang et al., Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde. J. Mater. Sci.: Mater. Electron. 30(23), 20624–20637 (2019)

    Google Scholar 

  19. K.M. Tripathi et al., Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 110, 97–129 (2016)

    Article  Google Scholar 

  20. K.M. Tripathi et al., Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustain. Mater. Technol. 16, 1–11 (2018)

    Google Scholar 

  21. G.S. Das et al., Biomass-derived carbon quantum dots for visible-light-induced photo catalysis and label-free detection of Fe(III) and ascorbic acid. Sci. Rep. 9(1), 15084 (2019)

    Article  ADS  Google Scholar 

  22. A. Sharma et al., Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: a junction between material science and biology. Appl. Mater. Today 18, 100467 (2020)

    Article  Google Scholar 

  23. R.H. Shandiz, et al., Fabrication of low temperature gas sensor using SrCe0.9Yb0.1O3 nanopowders as proton conductor. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 45(8), 1108–1111 (2015)

    Google Scholar 

  24. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)

    Article  ADS  Google Scholar 

  25. Singh, M., B.C. Yadav, A. Ranjan, R.K. Sonker, M. Kaur, Detection of liquefied petroleum gas below lowest explosion limit (LEL) using nanostructured hexagonal strontium ferrite thin film. Sens. Actuators, B: Chem. 249 96–104 (2017)

    Google Scholar 

  26. R.K. Sonker, S.R. Sabhajeet, B.C. Yadav, TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J. Mater. Sci. Mater. Electron. 27(11), 11726–11732 (2016)

    Google Scholar 

  27. R.K. Sonker, M. Singh, U. Kumar, B.C. Yadav, MWCNT doped ZnO nanocomposite thin film as LPG sensing. J. Inorg. Organomet. Polym. Mater. 26(6), 1434–1440 (2016)

    Google Scholar 

  28. R.K. Sonker, B.C. Yadav, Low temperature study of nanostructured Fe2O3 thin films as NO2 sensor. Mater. Today: Proc. 3(6), 2315–2320 (2016)

    Google Scholar 

  29. J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu, Y. Deng, X. Fang, Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34(2), 2104958 (2022)

    Article  Google Scholar 

  30. Y.-K. Syue, K.-C. Hsu, T.-H. Fang, C.-I. Lee, C.-J. Shih, Characteristics and gas sensor applications of ZnO-Perovskite heterostructure. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.01.126

  31. R.K. Sonker, B.C. Yadav, Chemical route deposited SnO2, SnO2-Pt and SnO2-Pd thin films for LPG detection. Adv. Sci. Lett. 20(5–6), 1023–1027 (2014)

    Google Scholar 

  32. P.T. Patil, R.S. Anwane, S.B. Kondawar, Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater. Sci. 10, 195–204 (2015)

    Article  Google Scholar 

  33. D.S. Dhawale, R.R. Salunkhe, U.M. Patil, K.V. Gurav, A.M. More, C.D. Lokhande, Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sens. Actuators, B Chem. 134(2), 988–992 (2008)

    Article  Google Scholar 

  34. L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.M. Patil, Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sens. Actuators, B Chem. 176, 514–521 (2013)

    Article  Google Scholar 

  35. R.D. Ladhe, K.V. Gurav, S.M. Pawar, J.H. Kim, B.R. Sankapal, p-PEDOT: PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature. J. Alloy. Compd. 515, 80–85 (2012)

    Article  Google Scholar 

  36. C. Gautam, C.S. Tiwary, L.D. Machado, S. Jose, S. Ozden, S. Biradar, D.S. Galvao, et al., Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors. RSC Adv. 6(91), 87888–87896 (2016)

    Google Scholar 

  37. D. Zhang, C.H.E.N. Yuxian, B.A.I. Xue, L.I. Xianwen, M.A. Yingxia, C.H.E.N. Zhenbin, Preparation and electrochemical testing of polyaniline (PANI) nanoparticles with uniform morphology and good dispersion in a water-task-specific ionic liquid medium. Mater. Sci. 25(3), 297–302 (2019)

    Google Scholar 

  38. R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases. J. Hazard. Mater. 370, 126–137 (2019)

    Google Scholar 

  39. R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater. Chem. Phys. 239, 121975 (2020)

    Google Scholar 

  40. J. Herrán, G.Gª Mandayo, I. Ayerdi, E. Castano, Influence of silver as an additive on BaTiO3–CuO thin film for CO2 monitoring. Sens. Actuators, B: Chem. 129, (1), 386–390 (2008)

    Google Scholar 

  41. A. Chapelle, F. Oudrhiri-Hassani, L. Presmanes, A. Barnabé, P. Tailhades, CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film. Appl. Surf. Sci. 256(14), 4715–4719 (2010)

    Article  ADS  Google Scholar 

  42. T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, CdO-based nanostructures as novel CO2 gas sensors. Nanotechnology 22(32), 325501 (2011)

    Article  Google Scholar 

  43. C.-J. Chiang, K.-T. Tsai, Y.-H. Lee, H.-W. Lin, Y.-L. Yang, C.-C. Shih, C.-Y. Lin, et al., In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectron. Eng. 111, 409–415 (2013)

    Google Scholar 

  44. K. Fan, H. Qin, L. Wang, J. Lin, H. Jifan, CO2 gas sensors based on La1−xSrxFeO3 nanocrystalline powders. Sens. Actuators, B Chem. 177, 265–269 (2013)

    Article  Google Scholar 

  45. Y.S. Ocak, M.L. Zeggar, M.F. Genişel, N.U. Uzun, M.S. Aida, CO2 sensing behavior of vertically aligned Si Nanowire/ZnO structures. Mater. Sci. Semiconductor Proc. 134, 106028 (2021)

    Google Scholar 

  46. Y.-J. Jeong, C. Balamurugan, D.-W. Lee, Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sens. Actuators, B: Chem. 229, 288–296 (2016)

    Google Scholar 

  47. R. Sonker, S. Sabhajeet, B. Yadav, R. Johari, Liquefied petroleum gas detection using SnO2, PANI-SnO2 and Ag-SnO2 composite film fabricated by chemical route. Int. J. Electroact. Mater. 5, 6–12 (2017)

    Google Scholar 

  48. S.R. Sabhajeet, R.K. Sonker, B.C. Yadav, Zn-Doped TiO2 nanoparticles employed as room temperature liquefied petroleum gas sensor. Adv. Sci. Eng. Med. 10(7–8), 736–740 (2018)

    Google Scholar 

  49. R.K. Sonker, B.C. Yadav, Development of Fe2O3–PANI nanocomposite thin film based sensor for NO2 detection. J. Taiwan Inst. Chem. Eng. 77, 276–281 (2017)

    Google Scholar 

  50. A.I. Ayesh, S.A. Alghamdi, B. Salah, S.H. Bennett, C. Crean, P.J. Sellin, High sensitivity H2S gas sensors using lead halide perovskite nanoparticles. Results Phys. 105333 (2022)

    Google Scholar 

  51. S.D. Waghmare, S.D. Raut, B.G. Ghule, V.V. Jadhav, S.F. Shaikh, A.M. Al-Enizi, M. Ubaidullah, A. Nafady, B.M. Thamer, R.S. Mane, Pristine and palladium-doped perovskite bismuth ferrites and their nitrogen dioxide gas sensor studies. J. King Saud Univ.-Sci. 32(7), 3125–3130 (2020)

    Article  Google Scholar 

  52. H. Soonmin, I. Paulraj, M. Kumar, R.K. Sonker, P. Nandi, Recent developments on the properties of chalcogenide thin films. (2022). https://doi.org/10.5772/intechopen.102429

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Johari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johari, R. et al. (2022). Perovskite-Based Gas Sensors. In: Sonker, R.K., Singh, K., Sonkawade, R. (eds) Smart Nanostructure Materials and Sensor Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2685-3_12

Download citation

Publish with us

Policies and ethics