Skip to main content

The Function of Stem Cells in Ocular Homeostasis

  • Reference work entry
  • First Online:
Handbook of Stem Cell Therapy

Abstract

Stem cells are defined as precursor cells with capabilities of self-renewal and the potential to differentiate into any type of specialized cells in the human body. Stem cells are categorized into two main types: pluripotent stem cells and adult stem cells. The former are derived from an embryo or can be generated by reprogramming and the latter from somatic tissues. The pluripotent stem cells can differentiate into three germ layers and tissue-specific stem cells, whereas the adult stem cells residing in somatic tissues can differentiate into specific cell lineage depending on the tissue environment. Multiple studies have characterized adult stem cells in many human tissues, including the eye, and in recent years, there have been many reports highlighting the critical role of adult stem cells in maintaining the natural homeostasis of the eye. This chapter reviews the various populations of adult stem cells that exist in multiple compartments of the eye and their critical role in regeneration and repairability during ocular damage and/or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

ESCs:

Embryonic stem cells

iPSCs:

Induced pluripotent stem cells

RP:

Retinitis pigmentosa

References

  • Abdouh M, Bernier G (2006) In vivo reactivation of a quiescent cell population located in the ocular ciliary body of adult mammals. Exp Eye Res 83:153–164

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Khan SY, Kabir F, Gottsch JD, Riazuddin SA (2018a) Comparative transcriptome analysis of hESC- and iPSC-derived corneal endothelial cells. Exp Eye Res 176:252–257

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Khan SY, Vasanth S, Ahmed MR, Chen R, Na CH, Thomson JJ et al (2018b) Generation and proteome profiling of PBMC-originated, iPSC-derived corneal endothelial cells. Invest Ophthalmol Vis Sci 59:2437–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Kabir F, Thomson JJ, Ma Y, Qiu C, Delannoy M, Khan SY et al (2019) Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies. Sci Rep 9:18552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Kabir F, Raskar S, Renuse S, Na CH, Delannoy M, Khan SY et al (2020) Generation and proteome profiling of PBMC-originated, iPSC-derived lentoid bodies. Stem Cell Res 46:101813

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Khan SY, Gottsch JD, Hutchinson EK, Khan A, Riazuddin SA (2021) Pluripotent stem cell-derived corneal endothelial cells as an alternative to donor corneal endothelium in keratoplasty. Stem Cell Rep 16:2320–2335

    Article  Google Scholar 

  • Alonso-Alonso ML, Srivastava GK (2015) Current focus of stem cell application in retinal repair. World J Stem Cells 7:641–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarado J, Murphy C, Polansky J, Juster R (1981) Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 21:714–727

    CAS  PubMed  Google Scholar 

  • Alvarado J, Murphy C, Juster R (1984) Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 91:564–579

    Article  CAS  PubMed  Google Scholar 

  • Amano S, Yamagami S, Mimura T, Uchida S, Yokoo S (2006) Corneal stromal and endothelial cell precursors. Cornea 25:S73–SS7

    Article  PubMed  Google Scholar 

  • Arjamaa O (2012) Corneal reconstruction by stem cells and bioengineering. Clin Ophthalmol 6:1407

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnhold S, Semkova I, Andressen C, Lenartz D, Meissner G, Sturm V, Kochanek S et al (2004) Iris pigment epithelial cells: a possible cell source for the future treatment of neurodegenerative diseases. Exp Neurol 187:410–417

    Article  CAS  PubMed  Google Scholar 

  • Ballios BG, Clarke L, Coles BLK, Shoichet MS, Van Der Kooy D (2012) The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors. Biol Open 1:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Hertsenberg AJ, Funderburgh ML, Burrow MK, Mann MM, Du Y, Lathrop KL et al (2014) Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med 6:266ra172

    Article  PubMed  PubMed Central  Google Scholar 

  • Bednarz J, Rodokanaki-von Schrenck A, Engelmann K (1998) Different characteristics of endothelial cells from central and peripheral human cornea in primary culture and after subculture. In Vitro Cell Dev Biol Anim 34:149–153

    Article  CAS  PubMed  Google Scholar 

  • Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27:7028–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas P, Borooah S, Matsui H, Voronchikhina M, Zhou J, Zawaydeh Q, Raghavendra PB et al (2021) Detection and validation of novel mutations in MERTK in a simplex case of retinal degeneration using WGS and hiPSC-RPEs model. Hum Mutat 42:189–199

    Article  CAS  PubMed  Google Scholar 

  • Blenkinsop TA, Salero E, Stern JH, Temple S (2012) The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. In: Epithelial cell culture protocols. Springer, New York, pp 45–65

    Chapter  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    Article  CAS  PubMed  Google Scholar 

  • Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95:2–7

    Article  CAS  PubMed  Google Scholar 

  • Boulze Pankert M, Goyer B, Zaguia F, Bareille M, Perron MC, Liu X, Cameron JD et al (2014) Biocompatibility and functionality of a tissue-engineered living corneal stroma transplanted in the feline eye. Invest Ophthalmol Vis Sci 55:6908–6920

    Article  PubMed  Google Scholar 

  • Branch MJ, Hashmani K, Dhillon P, Jones DR, Dua HS, Hopkinson A (2012) Mesenchymal stem cells in the human corneal limbal stroma. Invest Ophthalmol Vis Sci 53:5109–5116

    Article  PubMed  Google Scholar 

  • Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434

    Article  CAS  PubMed  Google Scholar 

  • Budak MT, Alpdogan OS, Zhou M, Lavker RM, Akinci MAM, Wolosin JM (2005) Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci 118:1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Buller C, Johnson DH, Tschumper RC (1990) Human trabecular meshwork phagocytosis. Observations in an organ culture system. Invest Ophthalmol Vis Sci 31:2156–2163

    CAS  PubMed  Google Scholar 

  • Chen W, Ishikawa M, Yamaki K, Sakuragi S (2003) Wistar rat palpebral conjunctiva contains more slow-cycling stem cells that have larger proliferative capacity: implication for conjunctival epithelial homeostasis. Jpn J Ophthalmol 47:119–128

    Article  PubMed  Google Scholar 

  • Cintron C, Schneider H, Kublin C (1973) Corneal scar formation. Exp Eye Res 17:251–259

    Article  CAS  PubMed  Google Scholar 

  • Clarke L, Ballios BG, Van Der Kooy D (2012) Generation and clonal isolation of retinal stem cells from human embryonic stem cells. Eur J Neurosci 36:1951–1959

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  CAS  PubMed  Google Scholar 

  • Cvekl A, Ashery-Padan R (2014) The cellular and molecular mechanisms of vertebrate lens development. Development 141:4432–4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das AV, James J, Zhao X, Rahnenfuhrer J, Ahmad I (2004) Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 273:87–105

    Article  CAS  PubMed  Google Scholar 

  • de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ (2005) ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23:63–73

    Article  PubMed  Google Scholar 

  • Del Debbio CB, Peng X, Xiong H, Ahmad I (2013) Adult ciliary epithelial stem cells generate functional neurons and differentiate into both early and late born retinal neurons under non-cell autonomous influences. BMC Neurosci 14:1–14

    Google Scholar 

  • Delmonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598

    Article  PubMed  Google Scholar 

  • Di Girolamo N (2011) Stem cells of the human cornea. Br Med Bull 100:191–207

    Article  PubMed  Google Scholar 

  • Du L, Wu X (2011) Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Artif Organs 35:691–705

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL (2005) Multipotent stem cells in human corneal stroma. Stem Cells 23:1266–1275

    Article  PubMed  Google Scholar 

  • Du Y, Carlson EC, Funderburgh ML, Birk DE, Pearlman E, Guo N, Kao WWY et al (2009) Stem cell therapy restores transparency to defective murine corneas. Stem Cells 27:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Roh DS, Mann MM, Funderburgh ML, Funderburgh JL, Schuman JS (2012) Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci 53:1566–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Yun H, Yang E, Schuman JS (2013) Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci 54:1450–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua HS, Saini JS, Azuara-Blanco A, Gupta P (2000) Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Opthalmol 48:83

    CAS  Google Scholar 

  • Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the effects of deficiency. Eye 17:877–885

    Article  CAS  PubMed  Google Scholar 

  • Eguchi G (1988) Cellular and molecular background of Wolffian lens regeneration. Cell Differ Dev 25:147–158

    Article  CAS  PubMed  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  • Espandar L, Bunnell B, Wang GY, Gregory P, McBride C, Moshirfar M (2012) Adipose-derived stem cells on hyaluronic acid-derived scaffold: a new horizon in bioengineered cornea. Arch Ophthalmol 130:202–208

    Article  CAS  PubMed  Google Scholar 

  • Ferraro S, Gomez-Montalvo AI, Olmos R, Ramirez M, Lamas M (2015) Primary cilia in rat mature Müller glia: downregulation of IFT20 expression reduces sonic hedgehog-mediated proliferation and dedifferentiation potential of Müller glia primary cultures. Cell Mol Neurobiol 35:533–542

    Article  CAS  PubMed  Google Scholar 

  • Fimbel SM, Montgomery JE, Burket CT, Hyde DR (2007) Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci 27:1712–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fini ME (1999) Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res 18:529–551

    Article  CAS  PubMed  Google Scholar 

  • Fischer AJ (2005) Neural regeneration in the chick retina. Prog Retin Eye Res 24:161–182

    Article  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252

    Article  CAS  PubMed  Google Scholar 

  • Freddo TF (1984) Intercellular junctions of the iris epithelia in Macaca mulatta. Invest Ophthalmol Vis Sci 25:1094–1104

    CAS  PubMed  Google Scholar 

  • Freegard TJ (1997) The physical basis of transparency of the normal cornea. Eye 11:465–471

    Article  PubMed  Google Scholar 

  • Fu Q, Qin Z, Jin X, Zhang L, Chen Z, He J, Ji J et al (2017) Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells. Investing Ophthalmol Vis Sci 58:517–527

    Article  Google Scholar 

  • Funderburgh JL, Funderburgh ML, Mann MM, Corpuz L, Roth MR (2001) Proteoglycan expression during transforming growth factor β-induced keratocyte-myofibroblast transdifferentiation. J Biol Chem 276:44173–44178

    Article  CAS  PubMed  Google Scholar 

  • Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278:45629–45637

    Article  CAS  PubMed  Google Scholar 

  • Funderburgh ML, Du Y, Mann MM, SundarRaj N, Funderburgh JL (2005) PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J 19:1371–1373

    Article  CAS  PubMed  Google Scholar 

  • Garfias Y, Nieves-Hernandez J, Garcia-Mejia M, Estrada-Reyes C, Jimenez-Martinez MC (2012) Stem cells isolated from the human stromal limbus possess immunosuppressant properties. Mol Vis 18:2087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giasson CJ, Deschambeault A, Carrier P, Germain L (2014) Adherens junction proteins are expressed in collagen corneal equivalents produced in vitro with human cells. Mol Vis 20:386

    PubMed  PubMed Central  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 80:2390–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez P, Epstein DL, Luna C, Liton PB (2006) Characterization of free-floating spheres from human trabecular meshwork (HTM) cell culture in vitro. Exp Eye Res 82:959–967

    Article  CAS  PubMed  Google Scholar 

  • Grierson I, Pfeiffer N, Cracknell KPB, Appleton P (2002) Histology and fine structure of the iris and outflow system following latanoprost therapy. Surv Ophthalmol 47:S176–SS84

    Article  PubMed  Google Scholar 

  • Hall PA, Watt FM (1989) Stem cells: the generation and maintenance of cellular diversity. Development 106:619–633

    Article  CAS  PubMed  Google Scholar 

  • Hanna CALV, O’Brien JE (1961) Cell production and migration in the epithelial layer of the lens. Arch Ophthalmol 66:103–107

    Article  CAS  PubMed  Google Scholar 

  • Hara S, Hayashi R, Soma T, Kageyama T, Duncan T, Tsujikawa M, Nishida K (2014) Identification and potential application of human corneal endothelial progenitor cells. Stem Cells Dev 23:2190–2201

    Article  CAS  PubMed  Google Scholar 

  • Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, Tsujikawa M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One 7:e45435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Leung KW, Zhang YH, Duan S, Zhong XF, Jiang RZ, Peng Z et al (2008) Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci 49:1447–1458

    Article  PubMed  Google Scholar 

  • He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, Peoc’h M et al (2012) Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells 30:2523–2534

    Article  CAS  PubMed  Google Scholar 

  • Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N et al (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131

    Article  CAS  PubMed  Google Scholar 

  • Hirata-Tominaga K, Nakamura T, Okumura N, Kawasaki S, Kay EP, Barrandon Y, Koizumi N et al (2013) Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells 31:1396–1407

    Article  CAS  PubMed  Google Scholar 

  • Homma K, Okamoto S, Mandai M, Gotoh N, Rajasimha HK, Chang YS, Chen S et al (2013) Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors. Stem Cells 31:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Bok D (2001) A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol Vis 7:14–19

    CAS  PubMed  Google Scholar 

  • Hughes WF (1946) Alkali burns of the eye: I. review of the literature and summary of present knowledge. Arch Ophthalmol 35:423–449

    Article  Google Scholar 

  • Inatomi T, Spurr-Michaud S, Tisdale AS, Zhan Q, Feldman ST, Gipson IK (1996) Expression of secretory mucin genes by human conjunctival epithelia. Invest Ophthalmol Vis Sci 37:1684–1692

    CAS  PubMed  Google Scholar 

  • Inoue Y, Yanagi Y, Tamaki Y, Uchida S, Kawase Y, Araie M, Okochi H (2005) Clonogenic analysis of ciliary epithelial derived retinal progenitor cells in rabbits. Exp Eye Res 81:437–445

    Article  CAS  PubMed  Google Scholar 

  • Jadhav AP, Roesch K, Cepko CL (2009) Development and neurogenic potential of Müller glial cells in the vertebrate retina. Prog Tetinal Eye Res 28:249–262

    Article  CAS  Google Scholar 

  • Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci 105:19508–19513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katikireddy KR, Dana R, Jurkunas UV (2014) Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells 32:717–729

    Article  CAS  PubMed  Google Scholar 

  • Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV (2016) Existence of neural crest-derived progenitor cells in normal and fuchs endothelial dystrophy corneal endothelium. Am J Pathol 186:2736–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki S, Tanioka H, Yamasaki K, Connon CJ, Kinoshita S (2006) Expression and tissue distribution of p63 isoforms in human ocular surface epithelia. Exp Eye Res 82:293–299

    Article  CAS  PubMed  Google Scholar 

  • Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS (2009) Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res 88:747–751

    Article  CAS  PubMed  Google Scholar 

  • Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, Quantock AJ (2009) The architecture of the cornea and structural basis of its transparency. Adv Protein Chem Struct Biol 78:25–49

    Article  CAS  PubMed  Google Scholar 

  • Kohno Ri, Ikeda Y, Yonemitsu Y, Hisatomi T, Yamaguchi M, Miyazaki M, Takeshita H et al (2006) Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation. Brain Res 1093:54–70

    Google Scholar 

  • Kosaka M, Kodama R, Eguchi G (1998) In vitro culture system for iris-pigmented epithelial cells for molecular analysis of transdifferentiation. Exp Cell Res 245:245–251

    Article  CAS  PubMed  Google Scholar 

  • Kruse FE (1994) Stem cells and corneal epithelial regeneration. Eye 8:170–183

    Article  PubMed  Google Scholar 

  • Kruse FE, Tseng SC (1993) Growth factors modulate clonal growth and differentiation of cultured rabbit limbal and corneal epithelium. Invest Ophthalmol Vis Sci 34:1963–1976

    CAS  PubMed  Google Scholar 

  • Lagali N, Fagerholm P, Griffith M (2011) Biosynthetic corneas: prospects for supplementing the human donor cornea supply. Expert Rev Med Devices 8:127–130

    Article  PubMed  Google Scholar 

  • Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT et al (2007) MIO-M1 cells and similar Müller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25:2033–2043

    Article  CAS  PubMed  Google Scholar 

  • Li GG, Zhu YT, Xie HT, Chen SY, Tseng SCG (2012) Mesenchymal stem cells derived from human limbal niche cells. Invest Ophthalmol Vis Sci 53:5686–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Qiu X, Yang J, Liu T, Luo Y, Lu Y (2016) Generation of human lens epithelial like cells from patient-specific induced pluripotent stem cells. J Cell Physiol 231:2555–2562

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G et al (2016) Lens regeneration using endogenous stem cells with gain of visual function. Nature 531:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzetti DWC, Uotila MH, Parikh N, Kaufman HE (1967) Central cornea guttata: incidence in the general population. Am J Ophthalmol 64:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Morgans CW, Girman S, Luo J, Zhao J, Du H, Lim S et al (2013) Neural stem cells derived by small molecules preserve vision. Transl Vis Sci Technol 2:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacNeil A, Pearson RA, MacLaren RE, Smith AJ, Sowden JC, Ali RR (2007) Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells 25:2430–2438

    Article  PubMed  Google Scholar 

  • Maekawa Y, Onishi A, Matsushita K, Koide N, Mandai M, Suzuma K, Kitaoka T et al (2016) Optimized culture system to induce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr Eye Res 41:558–568

    CAS  PubMed  Google Scholar 

  • Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, Ehalt T et al (2006) Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 47:3612–3624

    Article  PubMed  Google Scholar 

  • Martin PR, Grünert U (1992) Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. J Comp Neurol 323:269–287

    Article  CAS  PubMed  Google Scholar 

  • Maurice DM (1957) The structure and transparency of the cornea. J Physiol 136:263–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAvoy JW, Chamberlain CG, de Iongh RU, Hales AM, Lovicu FJ (1999) Lens development. Eye (Lond) 13(Pt 3b):425–437

    Article  Google Scholar 

  • McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR (2007) Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis 13:1984–2000

    CAS  PubMed  Google Scholar 

  • Michael R, van Marle J, Vrensen GFJM, van den Berg TJTP (2003) Changes in the refractive index of lens fibre membranes during maturation-impact on lens transparency. Exp Eye Res 77:93–99

    Article  CAS  PubMed  Google Scholar 

  • Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264

    Article  CAS  PubMed  Google Scholar 

  • Mimura T, Joyce NC (2006) Replication competence and senescence in central and peripheral human corneal endothelium. Invest Ophthalmol Vis Sci 47:1387–1396

    Article  PubMed  Google Scholar 

  • Mimura T, Yamagami S, Yokoo S, Araie M, Amano S (2005) Comparison of rabbit corneal endothelial cell precursors in the central and peripheral cornea. Invest Ophthalmol Vis Sci 46:3645–3648

    Article  PubMed  Google Scholar 

  • Mitashov VI (1997) Retinal regeneration in amphibians. Int J Dev Biol 41:893–905

    CAS  PubMed  Google Scholar 

  • Moe MC, Kolberg RS, Sandberg C, Vik-Mo E, Olstorn H, Varghese M, Langmoen IA et al (2009) A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain. Exp Eye Res 88:30–38

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki T, Zhao J (2005) Uniform distribution of epithelial stem cells in the bulbar conjunctiva. Invest Ophthalmol Vis Sci 46:126–132

    Article  PubMed  Google Scholar 

  • Nakatsu MN, Gonzalez S, Mei H, Deng SX (2014) Human limbal mesenchymal cells support the growth of human corneal epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 55:6953–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napier HRL, Kidson SH (2007) Molecular events in early development of the ciliary body: a question of folding. Exp Eye Res 84:615–625

    Article  CAS  PubMed  Google Scholar 

  • Nishida K, Kinoshita S, Ohashi Y, Kuwayama Y, Yamamoto S (1995) Ocular surface abnormalities in aniridia. Am J Ophthalmol 120:368–375

    Article  CAS  PubMed  Google Scholar 

  • O’Connor MD, McAvoy JW (2007) In vitro generation of functional lens-like structures with relevance to age-related nuclear cataract. Invest Ophthalmol Vis Sci 48:1245–1252

    Article  PubMed  Google Scholar 

  • Oliva MS, Schottman T, Gulati M (2012) Turning the tide of corneal blindness. Indian J Ophthalmol 60:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci 101:13654–13659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27:4210–4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224

    Article  CAS  PubMed  Google Scholar 

  • Patel SV, McLaren JW, Hodge DO, Bourne WM (2001) Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci 42:333–339

    CAS  PubMed  Google Scholar 

  • Patel SV, McLaren JW, Hodge DO, Bourne WM (2002) Confocal microscopy in vivo in corneas of long-term contact lens wearers. Invest Ophthalmol Vis Sci 43:995–1003

    PubMed  Google Scholar 

  • Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini G, Rama P, Mavilio F, De Luca M (2009) Epithelial stem cells in corneal regeneration and epidermal gene therapy. J Pathol 217:217–228

    Article  CAS  PubMed  Google Scholar 

  • Persons BJ, Modak SP (1970) The pattern of DNA synthesis in the lens epithelium and the annular pad during development and growth of the chick lens. Exp Eye Res 9:144–151

    Article  CAS  PubMed  Google Scholar 

  • Pinnamaneni N, Funderburgh JL (2012) Concise review: stem cells in the corneal stroma. Stem Cells 30:1059–1063

    Article  CAS  PubMed  Google Scholar 

  • Polisetty N, Fatima A, Madhira SL, Sangwan VS, Vemuganti GK (2008) Mesenchymal cells from limbal stroma of human eye. Mol Vis 14:431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu X, Yang J, Liu T, Jiang Y, Le Q, Lu Y (2012) Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS One 7:e32612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafferty NS, Rafferty KA Jr (1981) Cell population kinetics of the mouse lens epithelium. J Cell Physiol 107:309–315

    Article  CAS  PubMed  Google Scholar 

  • Ramaesh K, Ramaesh T, Dutton GN, Dhillon B (2005) Evolving concepts on the pathogenic mechanisms of aniridia related keratopathy. Int J Biochem Cell Biol 37:547–557

    Article  CAS  PubMed  Google Scholar 

  • Rapaport DH, Rakic P, Yasamura D, LaVail MM (1995) Genesis of the retinal pigment epithelium in the macaque monkey. J Comp Neurol 363:359–376

    Article  CAS  PubMed  Google Scholar 

  • Raymond PA, Hitchcock PF (1997) Retinal regeneration: common principles but a diversity of mechanisms. Adv Neurol 72:171–184

    CAS  PubMed  Google Scholar 

  • Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:1–17

    Article  Google Scholar 

  • Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36:206–220

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia 61:651–678

    Article  PubMed  Google Scholar 

  • Ren R, Hutcheon AEK, Guo XQ, Saeidi N, Melotti SA, Ruberti JW, Zieske JD et al (2008) Human primary corneal fibroblasts synthesize and deposit proteoglycans in longer term 3-D cultures. Dev Dyn 237:2705–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Aguirre LI, Ferraro S, Quintero H, Sánchez-Serrano SL, Gómez-Montalvo A, Lamas M (2013) Glutamate-induced epigenetic and morphological changes allow rat Müller cell dedifferentiation but not further acquisition of a photoreceptor phenotype. Neuroscience 254:347–360

    Article  CAS  PubMed  Google Scholar 

  • Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, Temple S (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10:88–95

    Article  CAS  PubMed  Google Scholar 

  • Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Article  CAS  PubMed  Google Scholar 

  • Seko Y, Azuma N, Kaneda M, Nakatani K, Miyagawa Y, Noshiro Y, Kurokawa R et al (2012) Derivation of human differential photoreceptor-like cells from the iris by defined combinations of CRX, RX and NEUROD. PLoS One 7:e35611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shortt AJ, Tuft SJ, Daniels JT (2010) Ex vivo cultured limbal epithelial transplantation. A clinical perspective. Ocul Surf 8:80–90

    Article  PubMed  Google Scholar 

  • Song Wt, Zhang Xy, Xia Xb (2015) Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma. Exp Biol Med 240:682–690

    Google Scholar 

  • Song Wt, Zeng Q, Xia Xb, Xia K, Pan Q (2016) Atoh7 promotes retinal Müller cell differentiation into retinal ganglion cells. Cytotechnology 68:267–277

    Google Scholar 

  • Stamer WD, Seftor RE, Snyder RW, Regan JW (1995) Cultured human trabecular meshwork cells express aquaporin-1 water channels. Curr Eye Res 14:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Stewart RM, Sheridan CM, Hiscott PS, Czanner G, Kaye SB (2015) Human conjunctival stem cells are predominantly located in the medial canthal and inferior forniceal areas. Invest Ophthalmol Vis Sci 56:2021–2030

    Article  CAS  PubMed  Google Scholar 

  • Strettoi E, Masland RH (1995) The organization of the inner nuclear layer of the rabbit retina. J Neurosci 15:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Asami M, Ohta H, Kosaka J, Kosaka M (2006) Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol 289:243–252

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tan DTH, Dart JKG, Holland EJ, Kinoshita S (2012) Corneal transplantation. Lancet 379:1749–1761

    Article  PubMed  Google Scholar 

  • Tay CY, Sathiyanathan P, Chu SWL, Stanton LW, Wong TT (2012) Identification and characterization of mesenchymal stem cells derived from the trabecular meshwork of the human eye. Stem Cells Dev 21:1381–1390

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tropepe V, Coles BLK, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, Van Der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Tseng SC (1989a) Concept and application of limbal stem cells. Eye (Lond) 3(Pt 2):141–157

    Article  Google Scholar 

  • Tseng SCG (1989b) Concept and application of limbal stem cells. Eye 3:141–157

    Article  PubMed  Google Scholar 

  • Tsonis PA, Del Rio-Tsonis K (2004) Lens and retina regeneration: transdifferentiation, stem cells and clinical applications. Exp Eye Res 78:161–172

    Article  CAS  PubMed  Google Scholar 

  • Vascotto SG, Griffith M (2006) Localization of candidate stem and progenitor cell markers within the human cornea, limbus, and bulbar conjunctiva in vivo and in cell culture. Anat Rec A Discov Mol Cell Evol Biol 288:921–931

    Article  PubMed  Google Scholar 

  • Vittitow J, Borris T (2004) Genes expressed in the human trabecular meshwork during pressure induced homeostatic response. J Cell Physiol 201:126–137

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Zheng H, Chen ZL, Xiao HL, Shen ZJ, Zhou GM (2008) Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat. Vis Res 48:223–234

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K, Maeda N et al (2004) Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 565:6–10

    Article  CAS  PubMed  Google Scholar 

  • Wei ZG, Wu RL, Lavker RM, Sun TT (1993) In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. Invest Ophthalmol Vis Sci 34:1814–1828

    CAS  PubMed  Google Scholar 

  • Wei ZG, Cotsarelis G, Sun TT, Lavker RM (1995) Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis. Invest Ophthalmol Vis Sci 36:236–246

    CAS  PubMed  Google Scholar 

  • Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF (2005) Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis 11:816–824

    CAS  PubMed  Google Scholar 

  • Wirtschafter JD, Ketcham JM, Weinstock RJ, Tabesh T, McLoon LK (1999) Mucocutaneous junction as the major source of replacement palpebral conjunctival epithelial cells. Invest Ophthalmol Vis Sci 40:3138–3146

    CAS  PubMed  Google Scholar 

  • Wu C, Lin H, Wang Q, Chen W, Luo H, Chen W, Zhang H (2012) Discrepant expression of microRNAs in transparent and cataractous human lenses. Invest Ophthalmol Vis Sci 53:3906–3912

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Du Y, Mann MM, Yang E, Funderburgh JL, Wagner WR (2013) Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates. Tissue Eng A 19:2063–2075

    Article  CAS  Google Scholar 

  • Xu H, Iglesia DDS, Kielczewski JL, Valenta DF, Pease ME, Zack DJ, Quigley HA (2007) Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest Ophthalmol Vis Sci 48:1674–1682

    Article  PubMed  Google Scholar 

  • Yamagami S, Yokoo S, Mimura T, Takato T, Araie M, Amano S (2007) Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology 114:433–439

    Article  PubMed  Google Scholar 

  • Yamamoto N, Majima K, Marunouchi T (2008) A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol 41:83–91

    Article  PubMed  Google Scholar 

  • Yang C, Yang Y, Brennan L, Bouhassira EE, Kantorow M, Cvekl A (2010) Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J 24:3274–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoeruek E, Bayyoud T, Maurus C, Hofmann J, Spitzer MS, Bartz-Schmidt KU, Szurman P (2012) Reconstruction of corneal stroma with decellularized porcine xenografts in a rabbit model. Acta Ophthalmol 90:e206–ee10

    Article  PubMed  Google Scholar 

  • Yokoo S, Yamagami S, Yanagi Y, Uchida S, Mimura T, Usui T, Amano S (2005) Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci 46:1626–1631

    Article  PubMed  Google Scholar 

  • Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, Tsubota K (2006) Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells 24:2714–2722

    Article  CAS  PubMed  Google Scholar 

  • Young RW (1985) Cell proliferation during postnatal development of the retina in the mouse. Dev Brain Res 21:229–239

    Article  Google Scholar 

  • Zhao JJ, Ouyang H, Luo J, Patel S, Xue Y, Quach J, Sfeir N et al (2014) Induction of retinal progenitors and neurons from mammalian Müller glia under defined conditions. J Biol Chem 289:11945–11951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:1–14

    Article  Google Scholar 

  • Zhou M, Leiberman J, Xu J, Lavker RM (2006) A hierarchy of proliferative cells exists in mouse lens epithelium: implications for lens maintenance. Invest Ophthalmol Vis Sci 47:2997–3003

    Article  PubMed  Google Scholar 

  • Zieske JD (1994) Perpetuation of stem cells in the eye. Eye (Lond) 8(Pt 2):163–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amer Riazuddin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Riazuddin, S.A., Khan, S.Y., Ali, M. (2022). The Function of Stem Cells in Ocular Homeostasis. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-19-2655-6_32

Download citation

Publish with us

Policies and ethics