Skip to main content

Pristine Biochar and Engineered Biochar: Differences and Application

  • Chapter
  • First Online:
Engineered Biochar

Abstract

Biochar is carbon rich, porous substance produced under limited or no supply of oxygen. Pristine biochar is considered as a sustainable, beneficial, and low-cost product employed for soil conditioning, agricultural production, and pollutant removal. It is a promising product having a wide array of applications including catalytic reaction, carbon sequestration, pollution mitigation, and sustainable agriculture. The production of biochar is a sustainable practice to treat and valorize solid waste. Without any activation or modification, pristine biochar has lower surface area, porosity, and surface functional groups. To enhance the physicochemical and functional properties of pristine biochar, modification of biochar is done via physical, chemical, and biological methods. This chapter provides an overview of pristine biochar, including its production, modification, differences between pristine and engineered/modified biochar and multi-dimensional applications. Additionally this chapter covers knowledge gaps and perspectives in the domain of biochar technology and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajmal Z, Muhmood A, Dong R, Wu S (2020) Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal. J Environ Manag 253:109730 https://doi.org/10.1016/j.jenvman.2019.109730

  • Bhaskar T, Pandey A, (2015) Advances in thermochemical conversion of biomass introduction. In: Pandey A, Bhaskar T, Stocker M, Sukumaran RK € (eds) Recent advances in thermo-chemical conversion of biomass. Elsevier, pp 3–30

    Google Scholar 

  • Bonanomi G, Ippolito F, Scala F (2015) “Black” future for plant pathology? biochar as a new soil amendment for controlling plant diseases. J Plant Patho 97(2):223–234

    Google Scholar 

  • Braghiroli F, Bouafif H, Neculita C, Koubaa A (2018) Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water, Air and Soil Pollut 229:230. https://doi.org/10.1007/s11270-018-3889-8

    Article  CAS  Google Scholar 

  • Cai H, Xu L, Chen G et al (2016) Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill. Appl Surf Sci 375:74–84

    Article  CAS  Google Scholar 

  • Cha J, Park S, Jung S et al (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15. https://doi.org/10.1016/j.jiec.2016.06.002

    Article  CAS  Google Scholar 

  • Chen BL, Zhou DD, Zhu LZ (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143. https://doi.org/10.1016/j.jbiosc.2013.05.035

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723

    Article  CAS  Google Scholar 

  • Colantoni N, Evic R, Lord S et al (2016) Characterization of biochar’s produced from pyrolysis of pelletized agricultural residues. Renew Sust Energ Rev 64:187–194. https://doi.org/10.1016/j.rser.2016.06.003

    Article  CAS  Google Scholar 

  • Conte P, Bertani R, Sgarbossa P et al (2021) Recent developments in understanding biochar’s physical-chemistry. J Agron 11(4):615. https://doi.org/10.3390/agronomy11040615

    Article  Google Scholar 

  • Costa JAS, Paranhos CM (2018) Systematic evaluation of amorphous silica production from rice husk ashes. J Clean Prod 192, 688e697. https://doi.org/10.1016/j.jclepro.2018.05.028

  • Dalahmeh S, Ahrens L, Gros M et al (2018) Potential of biochar filters for onsite sewage treatment: adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive, and no biofilm. Sci Total Environ 612:192–201

    Article  CAS  Google Scholar 

  • Devi P, Saroha AK (2015) Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chem Eng J 271:195–203

    Article  CAS  Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95:960–966

    Google Scholar 

  • Fang C, Zhang T, Li P (2015) Phosphorus recovery from biogas fermentation liquid by Ca– Mg loaded biochar. J Environ Sci 29:106–114

    Article  CAS  Google Scholar 

  • Frankel ML, Bhuiyan TI, Veksha A (2016) Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour Technol 216:352–361

    Article  CAS  Google Scholar 

  • Guo S, Peng J, Li W (2009) Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255:8443–8449. https://doi.org/10.1016/j.apsusc.2009.05.150

    Article  CAS  Google Scholar 

  • Hamedi J, Dehhaghi M, Mohammdipanah F (2015) Isolation of extremely heavy metal resistant strains of rare actinomycetes from high metal content soils in Iran. Int J Environ Res 9(2):475–480

    CAS  Google Scholar 

  • Han Y, Cao X, Ouyang X et al (2016) Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere 145:336–341

    Article  CAS  Google Scholar 

  • He R, Peng Z, Lyu HH et al (2018) Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Sci Total Environ 612:1177–1186

    Article  CAS  Google Scholar 

  • Igalavithana AD, Lee S-E, Lee YH et al (2017) Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174:593–603. https://doi.org/10.1016/j.chemosphere.2017.01.148

    Article  CAS  PubMed  Google Scholar 

  • Inyang M, Gao B, Yao Y et al (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56

    Article  CAS  Google Scholar 

  • Jaiswal AK, Alkan N, Elad Y et al (2020) Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci Rep 10:13934. https://doi.org/10.1038/s41598-020-70882-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jingchun T, Wenying Z, Rai K, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659

    Google Scholar 

  • Kazemi H, Dehhaghi M, Ok YS et al (2020) A comprehensive review of engineered biochar: production, characteristics, and environmental applications. J Clean Prod 270:122462. https://doi.org/10.1016/j.jclepro.2020

  • Kong HL, He J, Gao YZ et al (2011) Cosorption of phen-anthrene and mercury from aqueous solution by soybean stalk-based biochar. J Agric Food Chem 59:12116–12123

    Article  CAS  Google Scholar 

  • Lehmann J, da Silva JP Jr, Steiner C et al (2003) Nutrient availability and leaching in an archaeological anthrosol and a ferrasol of the Central Amazon basin: fertilizer, manure, and charcoal amendments. Plant Soil. 249:343–357

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adap Strateg Glob Chang. 11(2):395–419

    Google Scholar 

  • Li H, Dong X, Da Silva EB (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Balasubramanian R (2012a) Hydrothermal carbonization of waste biomass … production of solid biochar fuel from waste biomass by hydrothermal carbonization. Appl Energ 115:394–404. https://doi.org/10.1016/j.apenergy.2013.11.036

    Article  CAS  Google Scholar 

  • Liu Z, Balasubramanian R (2012b) Greenpeat: an innovative sustainable material recovered from waste. Proc Environ Sci Eng Manag 16:159–166

    Article  CAS  Google Scholar 

  • Liu Z, Quek A, Balasubramanian R (2012) Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour Technol 16:159–166. https://doi.org/10.1016/j.biortech.2012.06.063

    Article  CAS  Google Scholar 

  • Mahmoud DK, Salleh MAM, Karim WAWA et al (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chem Eng J 181:449–457

    Article  Google Scholar 

  • Manariotis ID, Fotopoulou KN, Karapanagioti HK (2015) Preparation and characterization of biochar sorbents produced from malt spent rootlets. Ind Eng Chem Res 54:9577–9584. https://doi.org/10.1021/acs.iecr.5b02698

    Article  CAS  Google Scholar 

  • Mašek O, Buss W, Brownsort P et al (2019) Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-41953-0

    Article  CAS  Google Scholar 

  • Mašek,O, Brownsort, P, Cross,A, Sohi,Saran (2013) Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151–155, ISSN 0016-2361. https://doi.org/10.1016/j.fuel.2011.08.044

  • Mohamed BA, Ellis N, Kim CS et al (2016a) Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Sci Total Environ 566:387–397

    Article  Google Scholar 

  • Mohamed BA, Ellis N, Kim CS, Bi X, Emam AE (2016b) Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Sci Total Environ 566–567:387–397. https://doi.org/10.1016/j.scitotenv.2016.04.16

    Article  PubMed  Google Scholar 

  • Mohan D, Kumar H, Sarswat A, Alexandre-Franco M, Pittman CU (2014) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528. https://doi.org/10.1016/j.cej.2013.09.057

    Article  CAS  Google Scholar 

  • Morgan HM Jr, Bu QL et al (2017) A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour Technol 230:112–121

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Kinyangi J (2009) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 92:163–176

    Article  Google Scholar 

  • Nguyen BT, Lehmann J, Hockaday WC et al (2011) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331

    Article  Google Scholar 

  • Nguyen T, Ngo H, Guo W et al (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol 148:574–585

    Article  CAS  Google Scholar 

  • Ok YS, Uchimiya SM, Chang SX, Bolan N (2015) Biochar—production, characterization and applications. CRC Press, Taylor and Francis, London

    Book  Google Scholar 

  • Peiris C, Gunatilake SR, Mlsna TE et al (2017a) Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour Technol 246:150–159

    Article  CAS  Google Scholar 

  • Perez-Mercado LF, Lalander C, Joel A (2019) Biochar filters as an on-farm treatment to reduce pathogens when irrigating with wastewater-polluted sources. J Environ Manage 248:109295. https://doi.org/10.1016/j.jenvman.2019.109295

    Article  PubMed  Google Scholar 

  • Peterson SC, Jackson MA, Kim S, Palmquist DE (2012) Increasing biochar surface area: optimization of ball milling parameters. Powder Technol 228:115–120

    Article  CAS  Google Scholar 

  • Qian K, Kumar A, Patil K et al (2013) Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6:3972–3986. https://doi.org/10.3390/en6083972

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, ... Ok YS (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Google Scholar 

  • Ramola S, Srivastava RK, Vasudevan P (2013) Effect of biochar application in combination with domestic wastewater on biomass yield of bioenergy plantations. Int J Energy Sect Manag 7(3):355–363

    Article  Google Scholar 

  • Ramola S, Belwal T, Srivastava RK (2020b) Thermochemical conversion of biomass waste-based biochar for environment remediation. In: Kharissova O, Martínez L, Kharisov B (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham, pp p1-16

    Google Scholar 

  • Ramola S, Belwal T, Li CJ et al (2020a) Improved lead removal from aqueous solution using novel porous bentonite and calcite-biochar composite. Sci Total Enviro 709:136171. https://doi.org/10.1016/j.scitotenv.2019.136171

  • Ramola S, Belwal T, Li CJ et al (2021) Preparation and application of novel rice husk biochar-calcite composites for phosphate removal from aqueous medium. J Clean Prod 299:126802. https://doi.org/10.1016/j.jclepro.2021.126802

  • Rawat J, Saxena J, Sanwal P (2019) Biochar—an imperative amendment for soil and the environment. Biochar: a sustainable approach for improving plant growth and soil properties. https://doi.org/10.5772/intechopen.82151

  • Regmi P, Moscoso JLG, Kumar S (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage 109(17):61–69

    Article  CAS  Google Scholar 

  • Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Sabio E, Álvarez-Murillo A, Román S, Ledesma B (2016) Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Manag 47:122–132

    Article  CAS  Google Scholar 

  • Shen Z, Zhang J, Hou D et al (2019) Synthesis of MgO coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ Int 122:357–362

    Article  CAS  Google Scholar 

  • Shim T, Yoo J, Ryu C, Park Y, Jung J (2015) Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresour Technol 197:85–90. https://doi.org/10.1016/j.biortech.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  • Sizmur T, Fresno T, Akgül G et al (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Lian F, Yu Z et al (2014) Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem Eng J 242:36–42. https://doi.org/10.1016/j.cej.2013.12.061

    Article  CAS  Google Scholar 

  • Tabatabaei M, Aghbashlo M, Dehhaghi M et al (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energy Combust Sci 74:239e303

    Google Scholar 

  • Takaya C, Fletcher L, Singh S et al (2016) Recovery of phosphate with chemically modified biochar’s. J Environ Chem Eng 4:1156–1165

    Article  CAS  Google Scholar 

  • Tan X-F, Liu Yg, Gu Y-L, et al (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333

    Google Scholar 

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659

    Article  CAS  Google Scholar 

  • Tchomgui-Kamga E, Alonzo V, Nanseu-Njiki CP et al (2010) Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water. Carbon 48:333–343. https://doi.org/10.1016/j.carbon.2009.09.034

    Article  CAS  Google Scholar 

  • Uchimiya M, Bannon DI, Wartelle LH (2012) Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J Agric Food Chem 60:1798–1809

    Article  CAS  Google Scholar 

  • Viglašová E, Galamboš M, Danková Z (2018) Production, characterization, and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manage 79:385–394. https://doi.org/10.1016/j.wasman.2018.08.005

    Article  CAS  Google Scholar 

  • Wang XH, Chen HP, Ding XJ, Yang HP, Zhang SH, Shen YQ (2009) Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources 4(3):946–959

    CAS  Google Scholar 

  • Wang Y, Lu J, Wu J et al (2015) Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar. Sustainability 7(9):12947–12957

    Article  CAS  Google Scholar 

  • Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47:2158–2207

    Article  CAS  Google Scholar 

  • Wang X, Guo Z, Hu Z, Zhang J (2020) Recent advances in biochar application for water and wastewater treatment: a review. Peer J 8:e9164. https://doi.org/10.7717/peerj.9164

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani I, Ramola S, Garg A, Kushvaha V (2021) Critical review of biochar applications in geo-engineering infrastructure: Moving beyond agricultural and environmental perspectives. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-021-01346-8

  • Xie M, Chen W, Xu Z et al (2014) Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ Pollut 186:187–194. https://doi.org/10.1016/j.envpol.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Xiao S, Yuan J, Zhao A (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102:10293–10298. https://doi.org/10.1016/j.biortech.2011.08.089

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Gao B, Chen J et al (2013) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol 138:8–13

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Fang J et al (2014) Characterization and environmental applications of clay biochar composites. Chem Eng J 242:136–143

    Article  CAS  Google Scholar 

  • Yi Y, Huang Z, Lu B et al (2020) Magnetic biochar for environmental remediation: a review. Bioresour Technol 298:122468. https://doi.org/10.1016/j.biortech.2019.122468

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang L, Chi R et al (2013) Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl Surf Sci 268:163–170. https://doi.org/10.1016/j.apsusc.2012.12.047

    Article  CAS  Google Scholar 

  • Zhang W, Mao S, Chen H et al (2013a) Pb (II) and Cr (VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour Technol 147:545–555

    Article  CAS  Google Scholar 

  • Zhang ZB, Cao XH, Liang P (2013b) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295(2):1201–1208

    Article  CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR (2013) Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Eng J 231:512–518. https://doi.org/10.1016/j.cej.2013.07.036

    Article  CAS  Google Scholar 

  • Zhou F, Wang H, Zhang W et al (2015) Pb (II), Cr (VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. Environ Sci Pollut Res 22(20):16031–16039

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Chhimwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chhimwal, M., Pandey, D., Srivastava, R.K. (2022). Pristine Biochar and Engineered Biochar: Differences and Application. In: Ramola, S., Mohan, D., Masek, O., Méndez, A., Tsubota, T. (eds) Engineered Biochar. Springer, Singapore. https://doi.org/10.1007/978-981-19-2488-0_1

Download citation

Publish with us

Policies and ethics