Skip to main content

Nutrigenomics Research: A Review

  • Chapter
  • First Online:
Bioactive Components
  • 730 Accesses

Abstract

In past 20 years, it has been told us to take nutrient-rich food for maintaining good health. Recently, it is studied that nutrient is responsible for the modification of gene and protein expression and at last influences cellular and organismal metabolism. Nutritional genomics, i.e., nutrigenomics, is behind the alteration of gene–diet interaction. The diverse tissue and organ-specific results of bioactive dietary components consist of gene expression patterns (transcriptome), enterprise of the chromatin (epigenome), protein expression patterns, inclusive of post-translational modifications (proteome), as nicely as metabolite profiles (metabolome). Nutrigenomics goes deeper, using molecular tools to become aware of how vitamins and bioactive meal compounds alter the DNA transcription and translation process, affecting the expression of genes that alter essential metabolic pathways, which may also finally affect health results. Ultimately, nutrigenomics will give the gene-nutrient information for restoring health and preventing nutrient-related disease. In this chapter, we provide an overview of nutrigenomics, gene–nutrient interactions, role on human health, and future opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afman L, Müller M (2006) Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc 106(4):569–576

    Article  CAS  PubMed  Google Scholar 

  • Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12(2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Benmoussa A, Laugier J, Beauparlant CJ, Lambert M, Droit A, Provost P (2020) Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. J Dairy Sci 103(1):16–29. https://doi.org/10.3168/jds.2019-16880

    Article  CAS  PubMed  Google Scholar 

  • Bordoni A, Capozzi F (2014) Foodomics for healthy nutrition. Curr Opin Clin Nutr Metab Care 17(5):418–424

    Article  PubMed  Google Scholar 

  • Bordoni L, Gabbianelli R (2021) The neglected nutrigenomics of milk: what is the role of inter-species transfer of small non-coding RNA? Food Biosci 39:100796

    Article  CAS  Google Scholar 

  • Braicu C, Catana C, Calin GA, Berindan-Neagoe I (2014) NCRNA combined therapy as future treatment option for cancer. Curr Pharm Des 20(42):6565–6574

    Article  CAS  PubMed  Google Scholar 

  • Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I (2017) Nutrigenomics in cancer: revisiting the effects of natural compounds. In: Seminars in cancer biology, vol 46. Academic Press, London, pp 84–106

    Google Scholar 

  • Brennan L, de Roos B (2021) Nutrigenomics: lessons learned and future perspectives. Am J Clin Nutr 113(3):503–516

    Article  PubMed  Google Scholar 

  • Caradonna F, Cruciata I, Luparello C (2022) Nutrigenetics, nutrigenomics and phenotypic outcomes of dietary low-dose alcohol consumption in the suppression and induction of cancer development: evidence from in vitro studies. Crit Rev Food Sci Nutr 62(8):2122–2139

    Article  CAS  PubMed  Google Scholar 

  • Carlberg C (2017) Molecular endocrinology of vitamin D on the epigenome level. Mol Cell Endocrinol 453:14–21

    Article  CAS  PubMed  Google Scholar 

  • Carlberg C (2019) Nutrigenomics of vitamin D. Nutrients 11(3):676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlberg C, Molnár F (2014) Mechanisms of gene regulation. Springer, Dordrecht, pp 3–15

    Google Scholar 

  • Davis CD, Milner J (2004) Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res 551(1–2):51–64

    Article  CAS  PubMed  Google Scholar 

  • De Caterina R, El-Sohemy A (2016) Moving towards specific nutrigenetic recommendation algorithms: caffeine, genetic variation and cardiovascular risk. Lifestyle Genom 9(2–4):106–115

    Article  Google Scholar 

  • Duval M, Cossart P, Lebreton A (2017) Mammalian microRNA and long noncoding RNA in the host-bacterial pathogen crosstalk. Semin Cell Dev Biol 65:11–19. https://doi.org/10.1016/J.SEMCDB.2016.06.016

    Article  CAS  PubMed  Google Scholar 

  • Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C et al (2016) Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: part 1-fields of precision nutrition. Lifestyle Genom 9(1):12–27

    Article  Google Scholar 

  • Franzago M, Fraticelli F, Marchetti D, Celentano C, Liberati M, Stuppia L, Vitacolonna E (2018) Nutrigenetic variants and cardio-metabolic risk in women with or without gestational diabetes. Diabetes Res Clin Pract 137:64–71

    Article  PubMed  Google Scholar 

  • Franzago M, Santurbano D, Vitacolonna E, Stuppia L (2020) Genes and diet in the prevention of chronic diseases in future generations. Int J Mol Sci 21(7):2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilas LI, Ionescu C, Tudoran O, Lisencu C, Balacescu O, Miere D (2016) The role of bioactive dietary components in modulating miRNA expression in colorectal cancer. Nutrients 8(10):590

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilani SMH, Rashid Z, Galani S, Ilyas S, Sahar S, Al-Ghanim K et al (2021) Growth performance, intestinal histomorphology, gut microflora and ghrelin gene expression analysis of broiler by supplementing natural growth promoters: a nutrigenomics approach. Saudi J Biol Sci 28(6):3438–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goni L, Cuervo M, Milagro FI, Martínez JA (2015) Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data. J Nutr 146(4):905S–912S

    Article  PubMed  Google Scholar 

  • Grant MM (2012) What do’omic technologies have to offer periodontal clinical practice in the future? J Periodontal Res 47(1):2–14

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi KA (2014) Nutrigenetics and personalized nutrition: are we ready for DNA-based dietary advice? Personal Med 11(3):297–307

    Article  CAS  Google Scholar 

  • Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502(7472):489–498

    Article  CAS  PubMed  Google Scholar 

  • Irimie AI, Braicu C, Cojocneanu-Petric R, Berindan-Neagoe I, Campian RS (2015) Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol Scand 73(3):161–168

    Article  CAS  PubMed  Google Scholar 

  • Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, Takeda Y (2015) Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci 98(5):2920–2933. https://doi.org/10.3168/jds.2014-9076

    Article  CAS  PubMed  Google Scholar 

  • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. J Clin Invest 103(11):1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ (2019) Microbe-host communication by small RNA in extracellular vesicles: vehicles for transkingdom RNA transportation. Int J Mol Sci 20(6):1487. https://doi.org/10.3390/ijms20061487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S et al (2005) Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120(2):261–273

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Poulsen P, Carlsson E, Ridderstråle M, Almgren P, Wojtaszewski J et al (2004) Multiple environmental and genetic factors influence skeletal muscle PGC-1α and PGC-1β gene expression in twins. J Clin Invest 114(10):1518–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Weiner HL (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19(1):32–43. https://doi.org/10.1016/j.chom.2015.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandard S, Müller M, Kersten S (2004) Peroxisome proliferator-activated receptor α target genes. Cell Mol Life Sci 61(4):393–416

    Article  CAS  PubMed  Google Scholar 

  • Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4(4):315–322

    Article  PubMed  Google Scholar 

  • Muzolf-Panek M, Gliszczyńska-Świgło A, de Haan L, Aarts JM, Szymusiak H, Vervoort JM et al (2008) Role of catechin quinones in the induction of EpRE-mediated gene expression. Chem Res Toxicol 21(12):2352–2360

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T (2020) Unravelling the mysteries of microRNA in breast milk. Nature 582:S12. https://doi.org/10.1038/d41586-020-01768-w

    Article  CAS  Google Scholar 

  • Nowacka-Woszuk J (2020) Nutrigenomics in livestock—recent advances. J App Genet 61(1):93–103. https://doi.org/10.1007/s13353-019-00522-x

    Article  Google Scholar 

  • Okerberg ES, Wu J, Zhang B, Samii B, Blackford K, Winn DT et al (2005) High-resolution functional proteomics by active-site peptide profiling. Proc Natl Acad Sci 102(14):4996–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsouris D, Müller M, Kersten S (2004) Peroxisome proliferator activated receptor ligands for the treatment of insulin resistance. Curr Opin Investigat Drugs 5(10):1045–1050

    CAS  Google Scholar 

  • Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci 100(14):8466–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlidis C, Patrinos GP, Katsila T (2015) Nutrigenomics: a controversy. Appl Transl Genom 4:50–53

    PubMed  PubMed Central  Google Scholar 

  • Perino M, Veenstra GJC (2016) Chromatin control of developmental dynamics and plasticity. Dev Cell 38(6):610–620

    Article  CAS  PubMed  Google Scholar 

  • Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM (2017) Nutrimiromics: role of microRNA and nutrition in modulating inflammation and chronic diseases. Nutrients 9(11):1168. https://doi.org/10.3390/nu9111168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simopoulos AP (2010) Nutrigenetics/nutrigenomics. Annu Rev Public Health 31:53–68

    Article  PubMed  Google Scholar 

  • Topiwala A, Ebmeier KP (2018) Effects of drinking on late-life brain and cognition. Evid Base Ment Health 21(1):12–15

    Article  Google Scholar 

  • Van Ommen B (2004) Nutrigenomics:: exploiting systems biology in the nutrition and health arenas. Nutrition 20(1):4–8

    PubMed  Google Scholar 

  • Vilar da Silva JH, González-Cerón F, Howerth EW, Rekaya R, Aggrey SE (2020) Alteration of dietary cysteine affects activities of genes of the transsulfuration and glutathione pathways, and development of skin tissues and feather follicles in chickens. Anim Biotech 31:203–208. https://doi.org/10.1080/10495398.2019.1577253

    Article  CAS  Google Scholar 

  • Wang L, Chen C (2013) Emerging applications of metabolomics in studying chemopreventive phytochemicals. AAPS J 15(4):941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Hirschi KD, Farmer LM (2015) Dietary RNA: new stories regarding oral delivery. Nutrients 7(5):3184–3199. https://doi.org/10.3390/nu7053184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Gupta VK, Jiang Y, Yang B, Gong L, Zhu H (2019) Cross-kingdom small RNA among animals, plants and microbes. Cells 8(4):371. https://doi.org/10.3390/cells8040371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, S., Kumar, Y. (2023). Nutrigenomics Research: A Review. In: Thakur, M., Belwal, T. (eds) Bioactive Components . Springer, Singapore. https://doi.org/10.1007/978-981-19-2366-1_21

Download citation

Publish with us

Policies and ethics