Skip to main content

Process Principles and Engineering of Solid-State Fermentation of Baijiu

  • Chapter
  • First Online:
Science and Engineering of Chinese Liquor (Baijiu)

Abstract

Solid-state fermentation is defined as the growth of microorganisms on moist solid substrates without free-flowing water [1–4] (Fig. 4.1). Solid-state fermentation was widely used for thousands of years in Asia to produce beverages and foods such as Baijiu, soy sauce, miso, vinegar, and Tempe [2, 5–7]. Many traditional solid-state fermentations are spontaneous processes with a mixture of yeasts, bacteria, and molds from the natural flora, which run without process control. Poor understanding of these fermentation processes, especially that of their engineering aspects, hampers the modernization needed to improve process safety, product quality, and production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Yazid N, Barrena R, Komilis D, Sanchez A. Solid-state fermentation as a novel paradigm for organic waste valorization: a review. Sustainability. 2017;9(2):224.

    Article  Google Scholar 

  2. Jin GY, Zhu Y, Xu Y. Mystery behind Chinese liquor fermentation. Trends Food Sci Technol. 2017;63:18–28.

    Article  CAS  Google Scholar 

  3. Nagel FJ. Process control of solid-state fermentation: simultaneous control of temperature and moisture content, PhD thesis. Wageningen University & Research; 2005.

    Google Scholar 

  4. Pandey A. Solid-state fermentation. Biochem Eng J. 2003;13(2–3):81–4.

    Article  CAS  Google Scholar 

  5. Hugenholtz J. Traditional biotechnology for new foods and beverages. Curr Opin Biotechnol. 2013;24(2):155–9.

    Article  CAS  Google Scholar 

  6. Xu Y, Wang D, Fan WL, Mu XQ, Chen J. Traditional Chinese biotechnology. In: Tsao GT, Ouyang P, Chen J, editors. Biotechnology in China II: chemicals, energy and environment, vol. 122. Berlin: Springer; 2010. p. 189–233.

    Chapter  Google Scholar 

  7. Zhu Y, Tramper J. Koji - where east meets west in fermentation. Biotechnol Adv. 2013;31(8):1448–57.

    Article  CAS  Google Scholar 

  8. Zheng XW, Tabrizi MR, Nout MJR, Han BZ. Daqu—a traditional Chinese liquor fermentation starter. J Inst Brewing. 2011;117(1):82–90.

    Article  CAS  Google Scholar 

  9. Zhang HX, Wang L, Tan YW, Wang HY, Yang F, Chen LQ, Hao F, Lv XB, Du H, Xu Y. Effect of Pichia on shaping the fermentation microbial community of sauce-flavor baijiu. Int J Food Microbiol. 2021;336:11.

    Article  Google Scholar 

  10. Du H, Lu H, Xu Y. Influence of Geosmin-producing Streptomyces on the growth and volatile metabolites of yeasts during Chinese liquor fermentation. J Agric Food Chem. 2015;63(1):290–6.

    Article  CAS  Google Scholar 

  11. Settanni L, Moschetti G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010;27(6):691–7.

    Article  CAS  Google Scholar 

  12. Tramper J, Zhu Y. Cheese: biotechnology through the ages. In: Modern Biotechnology: Panacea or new Pandora’s box? Wageningen: Wageningen Academic; 2011. p. 71–80.

    Chapter  Google Scholar 

  13. Holzapfel WH. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol. 2002;75(3):197–212.

    Article  CAS  Google Scholar 

  14. Kondjoyan A, Rouaud O, McCann MS, Havet M, Foster A, Swain M, Daudin JD. Modelling coupled heat-water transfers during a decontamination treatment of the surface of solid food products by a jet of hot air. I. Sensitivity analysis of the model and first validations of product surface temperature under constant air temperature conditions. J Food Eng. 2006;76(1):53–62.

    Article  Google Scholar 

  15. Astoreca A, Vaamonde G, Dalcero A, Ramos AJ, Marin S. Modelling the effect of temperature and water activity of aspergillus flavus isolates from corn. Int J Food Microbiol. 2012;156(1):60–7.

    Article  CAS  Google Scholar 

  16. He Q, Chen HZ. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI. Anal Bioanal Chem. 2015;407(30):9115–23.

    Article  CAS  Google Scholar 

  17. Sala A, Barrena R, Artola A, Sanchez A. Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste. Crit Rev Environ Sci Technol. 2019;49(8):655–94.

    Article  CAS  Google Scholar 

  18. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol. 2010;46(7):541–9.

    Article  CAS  Google Scholar 

  19. Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J. 2013;81:146–61.

    Article  CAS  Google Scholar 

  20. Mansour AA, Arnaud T, Lu-Chau TA, Fdz-Polanco M, Moreira MT, Rivero JAC. Review of solid state fermentation for lignocellulolytic enzyme production: challenges for environmental applications. Rev Environ Sci Biotechnol. 2016;15(1):31–46.

    Article  CAS  Google Scholar 

  21. Quiroz RD, Roussos S, Hernandez D, Rodriguez R, Castillo F, Aguilar CN. Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model. Crit Rev Biotechnol. 2015;35(3):326–33.

    Article  Google Scholar 

  22. Wang BW, Wu Q, Xu Y, Sun BG. Specific volumetric weight-driven shift in microbiota compositions with Saccharifying activity change in starter for Chinese baijiu fermentation. Front Microbiol. 2018;9:11.

    Google Scholar 

  23. Li T, Tu CH, Rui X, Gao YW, Li W, Wang K, Xiao Y, Dong MS. Study of water dynamics in the soaking, steaming, and solid-state fermentation of glutinous rice by LF-NMR: a novel monitoring approach. J Agric Food Chem. 2015;63(12):3261–70.

    Article  CAS  Google Scholar 

  24. Nagel FJ, Van As H, Tramper J, Rinzema A. Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with aspergillus oryzae. Biotechnol Bioeng. 2002;79(6):653–63.

    Article  CAS  Google Scholar 

  25. Sui WJ, Chen HZ. Effects of water states on steam explosion of lignocellulosic biomass. Bioresour Technol. 2016;199:155–63.

    Article  CAS  Google Scholar 

  26. von Meien OF, Mitchell DA. A two-phase model for water and heat transfer within an intermittently-mixed solid-state fermentation bioreactor with forced aeration. Biotechnol Bioeng. 2002;79(4):416–28.

    Article  Google Scholar 

  27. Weber FJ, Oostra J, Tramper J, Rinzema A. Validation of a model for process development and scale-up of packed-bed solid-state bioreactors. Biotechnol Bioeng. 2002;77(4):381–93.

    Article  CAS  Google Scholar 

  28. Liu BL, Tzeng YM. Water content and water activity for the production of cyclodepsipeptides in solid-state fermentation by Metarhizium anisopliae. Biotechnol Lett. 1999;21(8):657–61.

    Article  CAS  Google Scholar 

  29. Nagel FJ, Tramper J, Bakker MSN, Rinzema A. Model for on-line moisture-content control during solid-state fermentation. Biotechnol Bioeng. 2001b;72(2):231–43.

    Article  CAS  Google Scholar 

  30. Kovrlija R, Rondeau-Mouro C. Multi-scale NMR and MRI approaches to characterize starchy products. Food Chem. 2017a;236:2–14.

    Article  CAS  Google Scholar 

  31. Jin GY, Zhu Y, Rinzema A, Wijffels RH, Ge XY, Xu Y. Water dynamics during solid-state fermentation by aspergillus oryzae YH6. Bioresour Technol. 2019;277:68–76.

    Article  CAS  Google Scholar 

  32. Nagel FJ, Tramper J, Bakker MSN, Rinzema A. Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol Bioeng. 2001c;72(2):219–30.

    Article  CAS  Google Scholar 

  33. Rodriguez-Fernandez DE, Rodriguez-Leon JA, de Carvalho JC, Karp SG, Sturm W, Parada JL, Soccol CR. Influence of airflow intensity on phytase production by solid-state fermentation. Bioresour Technol. 2012;118:603–6.

    Article  CAS  Google Scholar 

  34. Szewczyk KW, Myszka L. The effect of temperature on the growth of a. niger in solid state fermentation. Bioprocess Eng. 1994;10(3):123–6.

    Article  CAS  Google Scholar 

  35. Gervais P, Molin P. The role of water in solid-state fermentation. Biochem Eng J. 2003;13(2–3):85–101.

    Article  CAS  Google Scholar 

  36. Marcone MF, Wang S, Albabish W, Nie S, Somnarain D, Hill A. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res Int. 2013;51(2):729–47.

    Article  CAS  Google Scholar 

  37. Labuza TP, Hyman CR. Moisture migration and control in multi-domain foods. Trends Food Sci Technol. 1998;9(2):47–55.

    Article  CAS  Google Scholar 

  38. Kovrlija R, Rondeau-Mouro C. Multi-scale NMR and MRI approaches to characterize starchy products. Food Chem. 2017b;236:2–14.

    Article  CAS  Google Scholar 

  39. Frias JM, Foucat L, Bimbenet JJ, Bonazzi C. Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging. Chem Eng J. 2002;86(1–2):173–8.

    Article  CAS  Google Scholar 

  40. Liu HL, Sun BG. Effect of fermentation processing on the flavor of baijiu. J Agric Food Chem. 2018;66(22):5425–32.

    Article  CAS  Google Scholar 

  41. Taylor JRN, Duodu KG. Traditional sorghum and millet food and beverage products and their technologies. In: Taylor JRN, Duodu KG, editors. Sorghum and millets (second edition). Washington, DC: AACC International Press; 2019. p. 259–92.

    Chapter  Google Scholar 

  42. Du H, Fan WL, Xu Y. Characterization of Geosmin as source of earthy odor in different aroma type Chinese liquors. J Agric Food Chem. 2011;59(15):8331–7.

    Article  CAS  Google Scholar 

  43. Huang YL, Sun W, Su QQ. Environmental issues for the Chinese strong aromatic liquor industry: an assessment for the brewing system. Environ Model Assess. 2014;19(2):153–65.

    Article  Google Scholar 

  44. Janke L, Weinrich S, Leite AF, Strauber H, Nikolausz M, Nelles M, Stinner W. Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: assessment of batch versus semi-continuous experiments. Renew Energy. 2019;143:1416–26.

    Article  CAS  Google Scholar 

  45. Casciatori FP, Bueck A, Thomeo JC, Tsotsas E. Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor. Chem Eng J. 2016;287:103–16.

    Article  CAS  Google Scholar 

  46. Casciatori FP, Laurentino CL, Taboga SR, Casciatori PA, Thomeo JC. Structural properties of beds packed with agro-industrial solid by-products applicable for solid-state fermentation: experimental data and effects on process performance. Chem Eng J. 2014;255:214–24.

    Article  CAS  Google Scholar 

  47. Nagel F, Tramper J, Bakker MSN, Rinzema A. Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol Bioeng. 2001a;72(2):219–30.

    Article  CAS  Google Scholar 

  48. Perez CL, Casciatori FP, Thomeo JC. Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: the case of cellulolytic enzymes production by a thermophilic fungus. Chem Eng J. 2019;361:1142–51.

    Article  CAS  Google Scholar 

  49. Kabanova N, Stulova I, Vilu R. Microcalorimetric study of the growth of bacterial colonies of Lactococcus lactis IL1403 in agar gels. Food Microbiol. 2012;29(1):67–79.

    Article  CAS  Google Scholar 

  50. Ngadi MO, Correia LR. Kinetics of solid-state ethanol fermentation from apple pomace. J Food Eng. 1992;17(2):97–116.

    Article  Google Scholar 

  51. de Olmos AR, Bru E, Garro MS. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation. Int J Food Microbiol. 2015;196:16–23.

    Article  Google Scholar 

  52. Kirthiga OM, Rajendran L. Analytical expressions of the concentrations of substrate, biomass, and ethanol for solid-state fermentation in biofuel production. Energ Technol. 2014;2(6):574–8.

    Article  CAS  Google Scholar 

  53. Li SZ, Li GM, Zhang L, Zhou ZX, Han B, Hou WH, Wang JB, Li TC. A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energy. 2013;102:260–5.

    Article  CAS  Google Scholar 

  54. Mei XY, Liu RH, Shen F, Cao WX, Wu HJ, Liu SY. Optimization of solid-state ethanol fermentation with the soluble carbohydrate in sweet sorghum stalk using response surface methodology. J Biobaased Mater Bioenergy. 2011;5(4):532–8.

    Article  CAS  Google Scholar 

  55. Nannyonga S, Tchuenbou-Magaia F, Goode K, Fryer P, Robbins P. Growth kinetics and modelling of S. Cerevisiae (NCYC 431) during de-lignified waste banana fermentation and chemical characterization. Biochem Eng J. 2018;137:255–61.

    Article  CAS  Google Scholar 

  56. Wang EQ, Li SZ, Tao L, Geng X, Li TC. Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energy. 2010;87(9):2839–45.

    Article  CAS  Google Scholar 

  57. Wang L, Sharifzadeh M, Templer R, Murphy RJ. Technology performance and economic feasibility of bioethanol production from various waste papers. Energ Environ Sci. 2012;5(2):5717–30.

    Article  CAS  Google Scholar 

  58. Yang XL, Li M, Liu HH, Ren LT, Xie GH. Technical feasibility and comprehensive sustainability assessment of sweet sorghum for bioethanol production in China. Sustainability. 2018;10(3):18.

    Article  Google Scholar 

  59. McKinlay JB, Zeikus JG, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl Environ Microbiol. 2005;71(11):6651–6.

    Article  CAS  Google Scholar 

  60. Shull JM, Watterson JJ, Kirleis AW. Proposed nomenclature for the alcohol-soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility, and structure. J Agric Food Chem. 1991;39(1):83–7.

    Article  CAS  Google Scholar 

  61. Jin GY, Uhl P, Zhu Y, Wijffels RH, Xu Y, Rinzema A. Modeling of industrial -scale anaerobic solid-state fermentation for Chinese liquor production. Chem Eng J. 2020;394:12.

    Article  Google Scholar 

  62. Wang SL, Wu Q, Nie Y, Wu JF, Xu Y. Construction of synthetic microbiota for reproducible flavor metabolism in Chinese light aroma type liquor produced by solid-state fermentation. Appl Environ Microbiol. 2019;85:e03090.

    Article  CAS  Google Scholar 

  63. Xu Y, Zhi Y, Wu Q, Du RB, Xu Y. Zygosaccharomyces bailii is a potential producer of various flavor compounds in Chinese Maotai-flavor liquor fermentation. Front Microbiol. 2017;8:9.

    Article  Google Scholar 

  64. Luong J. Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng. 1985;27(3):280–5.

    Article  CAS  Google Scholar 

  65. Mercier P, Yerushalmi L, Rouleau D, Dochain D. Kinetics of lactic acid fermentation on glucose and corn by lactobacillus amylophilus. J Chem Technol Biotechnol. 1992;55(2):111–21.

    Article  CAS  Google Scholar 

  66. CNC. [Online] 2020. https://www.cncgrondstoffen.nl/engels. Accessed Aug 2020.

  67. Jurak E. How mushrooms feed on compost: conversion of carbohydrates and linin in industrial wheat straw based compost enabling the growth of Agaricus bisporus. Wageningen: Wageningen University; 2015.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22108101) and Chinese Baijiu Industrial Technology Innovation Strategic Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyuan Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, G., Zhu, Y., Rinzema, A., Wijffels, R., Xu, Y. (2023). Process Principles and Engineering of Solid-State Fermentation of Baijiu. In: Xu, Y. (eds) Science and Engineering of Chinese Liquor (Baijiu). Springer, Singapore. https://doi.org/10.1007/978-981-19-2195-7_4

Download citation

Publish with us

Policies and ethics