Skip to main content

Skin Lesion Detection Using Recent Machine Learning Approaches

  • Chapter
  • First Online:
Prognostic Models in Healthcare: AI and Statistical Approaches

Part of the book series: Studies in Big Data ((SBD,volume 109))

Abstract

Traditional and deep learning approaches act a significant performance in the medical fields. They have been used to identify various illnesses on the early stage. Countless death rates were recorded in the last two decades due to cancer. Out of these cases, skin cancer was the highest popular form of cancer. Sunlight, ultraviolet rays, moles, and many other reasons cause skin cancer. Skin cancer can be treated if it is diagnosed at the premature stage. Manually diagnosing skin cancer is a time-consuming procedure, requiring a lot of human power while it is a grueling procedure. Various approaches for automatically detecting skin cancer have now been developed in recent years as technology has improved. In this chapter skin lesion detection steps like preprocessing (to remove noise from images), segmentation (to get skin lesion location), feature extraction, feature selection, and classification methods have been discussed in detail. Furthermore limitation, gaps in the domain of skin lesions are also discussed that provide help for the researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pacheco, A.G., Krohling, R.A.: Recent advances in deep learning applied to skin cancer detection. arXiv preprint arXiv:1912.03280 (2019)

  2. Hintz-Madsen, M.: A probabilistic framework for classification of dermatoscopic images. Citeseer (1998)

    Google Scholar 

  3. Jain, S., Pise, N.: Computer aided melanoma skin cancer detection using image processing. Procedia Comput. Sci. 48, 735–740 (2015)

    Article  Google Scholar 

  4. Seth, D., Cheldize, K., Brown, D., Freeman, E.E.: Global burden of skin disease: inequities and innovations. Curr. Dermatol. Rep. 6(3), 204–210 (2017)

    Article  Google Scholar 

  5. Hameed, N., Ruskin, A., Hassan, K.A., Hossain, M.A.: A comprehensive survey on image-based computer aided diagnosis systems for skin cancer. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), pp. 205–214. IEEE (2016)

    Google Scholar 

  6. Sultana, A., Dumitrache, I., Vocurek, M., Ciuc, M.: Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM), pp. 1–4. IEEE (2014)

    Google Scholar 

  7. Khan, M.A., Akram, T., Sharif, M., Javed, K., Rashid, M., Bukhari, S.A.C.: An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection. Neural Comput. Appl. 32(20), 15929–15948 (2020)

    Article  Google Scholar 

  8. Lee, T., Ng, V., Gallagher, R., Coldman, A., McLean, D.: Dullrazor®: a software approach to hair removal from images. Comput. Biol. Med. 27(6), 533–543 (1997)

    Article  Google Scholar 

  9. Amin, J., Sharif, M., Raza, M., Yasmin, M.: Detection of brain tumor based on features fusion and machine learning. J. Ambient Intell. Hum. Comput. 1–17 (2018)

    Google Scholar 

  10. Amin, J., Sharif, M., Raza, M., Saba, T., Anjum, M.A.: Brain tumor detection using statistical and machine learning method. Comput. Methods Programs Biomed. 177, 69–79 (2019)

    Article  Google Scholar 

  11. Celebi, M.E., Aslandogan, Y.A., Bergstresser, P.R.: Unsupervised border detection of skin lesion images. In: International Conference on Information Technology: Coding and Computing (ITCC'05)—Volume II, vol. 2, pp. 123–128. IEEE (2005)

    Google Scholar 

  12. Toossi, M.T.B., Pourreza, H.R., Zare, H., Sigari, M.H., Layegh, P., Azimi, A.: An effective hair removal algorithm for dermoscopy images. Skin Res. Technol. 19(3), 230–235 (2013)

    Article  Google Scholar 

  13. Church, J.C., Chen, Y., Rice, S.V.: A spatial median filter for noise removal in digital images. In: IEEE SoutheastCon 2008, pp. 618–623. IEEE (2008)

    Google Scholar 

  14. Amin, J., Sharif, M., Fernandes, S.L., Wang, S.H., Saba, T., Khan, A.R.: Breast microscopic cancer segmentation and classification using unique 4‐qubit‐quantum model. Microsc. Res. Tech. (2022)

    Google Scholar 

  15. Amin, J., Anjum, M.A., Sharif, A., Raza, M., Kadry, S., Nam, Y.: Malaria Parasite Detection Using a Quantum-Convolutional Network (2022)

    Google Scholar 

  16. Amin, J., Anjum, M.A., Sharif, M., Saba, T., Tariq, U.: An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach. Microsc. Res. Tech. 84(10), 2254–2267 (2021)

    Article  Google Scholar 

  17. Suganya, R.: An automated computer aided diagnosis of skin lesions detection and classification for dermoscopy images. In: 2016 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1–5. IEEE (2016)

    Google Scholar 

  18. Masood, A., Al-Jumaily, A.: Differential evolution based advised SVM for histopathological image analysis for skin cancer detection. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 781–784. IEEE (2015)

    Google Scholar 

  19. Abbas, Q., Celebi, M.E., García, I.F.: Hair removal methods: a comparative study for dermoscopy images. Biomed. Signal Process. Control 6(4), 395–404 (2011)

    Article  Google Scholar 

  20. Erkol, B., Moss, R.H., Joe Stanley, R., Stoecker, W.V., Hvatum, E.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 11(1), 17–26 (2005)

    Google Scholar 

  21. Agarwal, A., Issac, A., Dutta, M.K.: A region growing based imaging method for lesion segmentation from dermoscopic images. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), pp. 632–637. IEEE (2017)

    Google Scholar 

  22. Zakeri, A., Hokmabadi, A.: Improvement in the diagnosis of melanoma and dysplastic lesions by introducing ABCD-PDT features and a hybrid classifier. Biocybern. Biomed. Eng. 38(3), 456–466 (2018)

    Article  Google Scholar 

  23. Hameed, N., Hameed, F., Shabut, A., Khan, S., Cirstea, S., Hossain, A.: An intelligent computer-aided scheme for classifying multiple skin lesions. Computers 8(3), 62 (2019)

    Article  Google Scholar 

  24. Hameed, N., Shabut, A.M., Ghosh, M.K., Hossain, M.A.: Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Syst. Appl. 141, 112961 (2020)

    Article  Google Scholar 

  25. Arivuselvam, B.: Skin cancer detection and classification using SVM classifier. Turk. J. Comput. Math. Educ. (TURCOMAT) 12(13), 1863–1871 (2021)

    Google Scholar 

  26. Nyemeesha, V.: A systematic study and approach on detection of classification of skin cancer using back propagated artificial neural networks. Turk. J. Comput. Math. Educ. (TURCOMAT) 12(11), 1737–1748 (2021)

    Google Scholar 

  27. Alsaade, F.W., Aldhyani, T.H., Al-Adhaileh, M.H.: Developing a recognition system for diagnosing melanoma skin lesions using artificial intelligence algorithms. Comput. Math. Methods Med. 2021 (2021)

    Google Scholar 

  28. Victor, A., Ghalib, M.: Automatic detection and classification of skin cancer. Int. J. Intell. Eng. Syst. 10(3), 444–451 (2017)

    Google Scholar 

  29. Khan, M.A., Sharif, M., Akram, T., Damaševičius, R., Maskeliūnas, R.: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics 11(5), 811 (2021)

    Article  Google Scholar 

  30. Amin, J., et al.: An integrated design based on dual thresholding and features optimization for white blood cells detection. IEEE Access 9, 151421–151433 (2021)

    Article  Google Scholar 

  31. Sharif, M., Amin, J., Yasmin, M., Rehman, A.: Efficient hybrid approach to segment and classify exudates for DR prediction. Multimed. Tools Appl. 79(15), 11107–11123 (2020)

    Article  Google Scholar 

  32. Amin, J., Sharif, M., Anjum, M.A., Nam, Y., Kadry, S., Taniar, D.: Diagnosis of COVID-19 infection using three-dimensional semantic segmentation and classification of computed tomography images. Comput. Mater. Contin. 68(2), 2451–2467 (2021)

    Google Scholar 

  33. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  34. Amin, J., Sharif, M., Gul, E., Nayak, R.S.: 3D-semantic segmentation and classification of stomach infections using uncertainty aware deep neural networks. Complex Intell. Syst. 1–17 (2021)

    Google Scholar 

  35. Ali, A.-R.A., Deserno, T.M.: A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data. In: Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment, vol. 8318, p. 83181I. International Society for Optics and Photonics (2012)

    Google Scholar 

  36. Yueksel, M.E., Borlu, M.: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 17(4), 976–982 (2009)

    Article  Google Scholar 

  37. Ashour, A.S., Hawas, A.R., Guo, Y., Wahba, M.A.: A novel optimized neutrosophic k-means using genetic algorithm for skin lesion detection in dermoscopy images. SIViP 12(7), 1311–1318 (2018)

    Article  Google Scholar 

  38. Abbas, Q., Celebi, M.E., Fondón García, I., Rashid, M.: Lesion border detection in dermoscopy images using dynamic programming. Skin Res. Technol. 17(1), 91–100 (2011)

    Google Scholar 

  39. Mete, M., Sirakov, N.M.: Lesion detection in dermoscopy images with novel density-based and active contour approaches. BMC Bioinform. 11(6), 1–13 (2010)

    Google Scholar 

  40. Xie, F., Bovik, A.C.: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recogn. 46(3), 1012–1019 (2013)

    Article  Google Scholar 

  41. Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. Dermosc. Image Anal. 10, 97–129 (2015)

    Google Scholar 

  42. Amin, J., Sharif, M., Yasmin, M., Saba, T., Anjum, M.A., Fernandes, S.L.: A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning. J. Med. Syst. 43(11), 1–16 (2019)

    Article  Google Scholar 

  43. Kader, R.A., Chehade, W.E.H., Al-Zaart, A.: Segmenting skin images for cancer detection. In: 2018 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 392–396. IEEE (2018)

    Google Scholar 

  44. Nachbar, F., et al.: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)

    Article  Google Scholar 

  45. Gonzalez, R.C., Woods, R.E., Eddins, S.: Image segmentation. Digit. image Process. 2, 331–390 (2002)

    Google Scholar 

  46. Celebi, M.E., Wen, Q., Hwang, S., Schaefer, G.: Color quantization of dermoscopy images using the k-means clustering algorithm. In: Color Medical Image Analysis, pp. 87–107. Springer (2013)

    Google Scholar 

  47. Al-Masni, M.A., Al-Antari, M.A., Choi, M.-T., Han, S.-M., Kim, T.-S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Methods Programs Biomed. 162, 221–231 (2018)

    Article  Google Scholar 

  48. Ünver, H.M., Ayan, E.: Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm. Diagnostics 9(3), 72 (2019)

    Article  Google Scholar 

  49. Xie, F., Fan, H., Li, Y., Jiang, Z., Meng, R., Bovik, A.: Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans. Med. Imaging 36(3), 849–858 (2016)

    Article  Google Scholar 

  50. Saba, T., Mohamed, A.S., El-Affendi, M., Amin, J., Sharif, M.: Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 59, 221–230 (2020)

    Article  Google Scholar 

  51. Mohamed, A.A.I., Ali, M.M., Nusrat, K., Rahebi, J., Sayiner, A., Kandemirli, F.: Melanoma skin cancer segmentation with image region growing based on fuzzy clustering mean. Int. J. Eng. Innov. Res. 6(2), 91C95 (2017)

    Google Scholar 

  52. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  53. Wen, H.: II-FCN for skin lesion analysis towards melanoma detection. arXiv preprint arXiv:1702.08699 (2017)

  54. Vesal, S., Ravikumar, N., Maier, A.: Skinnet: a deep learning framework for skin lesion segmentation. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pp. 1–3. IEEE (2018)

    Google Scholar 

  55. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.-A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2016)

    Article  Google Scholar 

  56. Nasir, M., Attique Khan, M., Sharif, M., Lali, I.U., Saba, T., Iqbal, T.: An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc. Res. Tech. 81(6), 528–543 (2018)

    Google Scholar 

  57. Khan, M.A., Sharif, M., Javed, M.Y., Akram, T., Yasmin, M., Saba, T.: License number plate recognition system using entropy-based features selection approach with SVM. IET Image Proc. 12(2), 200–209 (2018)

    Article  Google Scholar 

  58. Khan, M.A., Javed, M.Y., Sharif, M., Saba, T., Rehman, A.: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 International Conference on Computer and Information Sciences (ICCIS), pp. 1–7. IEEE (2019)

    Google Scholar 

  59. Mughal, B., Muhammad, N., Sharif, M., Rehman, A., Saba, T.: Removal of pectoral muscle based on topographic map and shape-shifting silhouette. BMC Cancer 18(1), 1–14 (2018)

    Article  Google Scholar 

  60. Mughal, B., Sharif, M., Muhammad, N., Saba, T.: A novel classification scheme to decline the mortality rate among women due to breast tumor. Microsc. Res. Tech. 81(2), 171–180 (2018)

    Article  Google Scholar 

  61. Khan, M.A., Sharif, M., Akram, T., Raza, M., Saba, T., Rehman, A.: Hand-crafted and deep convolutional neural network features fusion and selection strategy: an application to intelligent human action recognition. Appl. Soft Comput. 87, 105986 (2020)

    Article  Google Scholar 

  62. Saba, T., Rehman, A., Mehmood, Z., Kolivand, H., Sharif, M.: Image enhancement and segmentation techniques for detection of knee joint diseases: a survey. Curr. Med. Imaging 14(5), 704–715 (2018)

    Article  Google Scholar 

  63. Rehman, A., Abbas, N., Saba, T., Rahman, S.I.u., Mehmood, Z., Kolivand, H.: Classification of acute lymphoblastic leukemia using deep learning. Microsc. Res. Tech. 81(11), 1310–1317 (2018)

    Google Scholar 

  64. Khan, M.A., et al.: Brain tumor detection and classification: a framework of marker-based watershed algorithm and multilevel priority features selection. Microsc. Res. Tech. 82(6), 909–922 (2019)

    Article  Google Scholar 

  65. Amin, J., Anjum, M.A., Sharif, M., Saba, T., Tariq, U.: An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach. Microsc. Res. Tech. (2021)

    Google Scholar 

  66. Lingala, M., et al.: Fuzzy logic color detection: blue areas in melanoma dermoscopy images. Comput. Med. Imaging Graph. 38(5), 403–410 (2014)

    Article  Google Scholar 

  67. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  68. Sharif, M., Amin, J., Nisar, M.W., Anjum, M.A., Muhammad, N., Shad, S.A.: A unified patch based method for brain tumor detection using features fusion. Cogn. Syst. Res. 59, 273–286 (2020)

    Article  Google Scholar 

  69. Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for skin cancer detection in dermoscopic images. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2420–2427. IEEE (2017)

    Google Scholar 

  70. Majumder, S., Ullah, M.A.: Feature extraction from dermoscopy images for an effective diagnosis of melanoma skin cancer. In: 2018 10th International Conference on Electrical and Computer Engineering (ICECE), pp. 185–188. IEEE (2018)

    Google Scholar 

  71. Kavitha, J., Suruliandi, A.: Texture and color feature extraction for classification of melanoma using SVM. In: 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE'16), pp. 1–6. IEEE (2016)

    Google Scholar 

  72. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  73. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  74. Khan, M.A., et al.: An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 18(1), 1–20 (2018)

    Article  Google Scholar 

  75. Nezhadian, F.K., Rashidi, S.: Melanoma skin cancer detection using color and new texture features. In: 2017 Artificial Intelligence and Signal Processing Conference (AISP), pp. 1–5. IEEE (2017)

    Google Scholar 

  76. Afza, F., Khan, M.A., Sharif, M., Rehman, A.: Microscopic skin laceration segmentation and classification: a framework of statistical normal distribution and optimal feature selection. Microsc. Res. Tech. 82(9), 1471–1488 (2019)

    Article  Google Scholar 

  77. Sharif, M., et al.: Recognition of different types of leukocytes using YOLOv2 and optimized bag-of-features. IEEE Access 8, 167448–167459 (2020)

    Article  Google Scholar 

  78. Khan, M.A., Sharif, M., Akram, T., Bukhari, S.A.C., Nayak, R.S.: Developed Newton-Raphson based deep features selection framework for skin lesion recognition. Pattern Recogn. Lett. 129, 293–303 (2020)

    Article  Google Scholar 

  79. Sharif, M., Tanvir, U., Munir, E.U., Khan, M.A., Yasmin, M.: Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J. Ambient Intell. Hum. Comput. 1–20 (2018)

    Google Scholar 

  80. Khan, M.A., Arshad, H., Nisar, W., Javed, M.Y., Sharif, M.: An integrated design of fuzzy C-means and NCA-based multi-properties feature reduction for brain tumor recognition. In: Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, pp. 1–28. Springer (2021)

    Google Scholar 

  81. Saleem, S., Amin, J., Sharif, M., Anjum, M.A., Iqbal, M., Wang, S.-H.: A deep network designed for segmentation and classification of leukemia using fusion of the transfer learning models. Complex Intell. Syst. 1–16 (2021)

    Google Scholar 

  82. Hall, M.A.: Correlation-based feature selection for machine learning (1999)

    Google Scholar 

  83. Harrell, F.E., Jr., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A.: Regression modelling strategies for improved prognostic prediction. Stat. Med. 3(2), 143–152 (1984)

    Article  Google Scholar 

  84. Charfaoui, Y.: Hands-on with Feature Selection Techniques: Embedded Methods. Available at: https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-embedded-methods-84747e814dab (2020)

  85. Sharif, M., Khan, M.A., Iqbal, Z., Azam, M.F., Lali, M.I.U., Javed, M.Y.: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput. Electron. Agric. 150, 220–234 (2018)

    Article  Google Scholar 

  86. Rohrer, R., Ganster, H., Pinz, A., Binder, M.: Feature selection in melanoma recognition. In: Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170), vol. 2, pp. 1668–1670. IEEE (1998)

    Google Scholar 

  87. Ganster, H., Pinz, P., Rohrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001)

    Article  Google Scholar 

  88. Green, A., Martin, N., Pfitzner, J., O’Rourke, M., Knight, N.: Computer image analysis in the diagnosis of melanoma. J. Am. Acad. Dermatol. 31(6), 958–964 (1994)

    Article  Google Scholar 

  89. Alquran, H., et al.: The melanoma skin cancer detection and classification using support vector machine. In: 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–5. IEEE (2017)

    Google Scholar 

  90. Roß, T., Handels, H., Kreusch, J., Busche, H., Wolf, H., Pöppl, S.J.: Automatic classification of skin tumours with high resolution surface profiles. In: International Conference on Computer Analysis of Images and Patterns, pp. 368–375. Springer (1995)

    Google Scholar 

  91. Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  92. Handels, H., Roß, T., Kreusch, J., Wolff, H.H., Poeppl, S.J.: Feature selection for optimized skin tumor recognition using genetic algorithms. Artif. Intell. Med. 16(3), 283–297 (1999)

    Article  Google Scholar 

  93. Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for feature selection and feature construction in skin cancer image classification. In: Pacific Rim International Conference on Artificial Intelligence, pp. 732–745. Springer (2018)

    Google Scholar 

  94. Oliveira, R.B., Pereira, A.S., Tavares, J.M.R.: Computational diagnosis of skin lesions from dermoscopic images using combined features. Neural Comput. Appl. 31(10), 6091–6111 (2019)

    Article  Google Scholar 

  95. Umer, M.J., Amin, J., Sharif, M., Anjum, M.A., Azam, F., Shah, J.H.: An integrated framework for COVID‐19 classification based on classical and quantum transfer learning from a chest radiograph. Concurr. Comput.: Pract. Exp. e6434 (2021)

    Google Scholar 

  96. Sharif, M.I., Li, J.P., Amin, J., Sharif, A.: An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network. Complex Intell. Syst. 1–14 (2021)

    Google Scholar 

  97. Ali, M.S., Miah, M.S., Haque, J., Rahman, M.M., Islam, M.K.: An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach. Learn. Appl. 5, 100036 (2021)

    Google Scholar 

  98. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  99. Amin, J., et al.: Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recogn. Lett. 131, 63–70 (2020)

    Article  Google Scholar 

  100. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  101. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  102. Chaturvedi, S.S., Tembhurne, J.V., Diwan, T.: A multi-class skin cancer classification using deep convolutional neural networks. Multimed. Tools Appl. 79(39), 28477–28498 (2020)

    Article  Google Scholar 

  103. Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multimed. Tools Appl. 77(9), 10437–10453 (2018)

    Article  Google Scholar 

  104. Khan, M.A., Zhang, Y.-D., Sharif, M., Akram, T.: Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification. Comput. Electr. Eng. 90, 106956 (2021)

    Article  Google Scholar 

  105. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: Densenet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  106. Amin, J., Sharif, M., Haldorai, A., Yasmin, M., Nayak, R.S.: Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell. Syst. 1–23 (2021)

    Google Scholar 

  107. Stolz, W.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4, 521–527 (1994)

    Google Scholar 

  108. Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Scalvenzi, M.: Automated application of the “7-point checklist” diagnosis method for skin lesions: estimation of chromatic and shape parameters. In: 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, vol. 3, pp. 1818–1822. IEEE (2005)

    Google Scholar 

  109. Argenziano, G.L 3-point checklist of dermoscopy

    Google Scholar 

  110. Marcal, A.R., Mendonca, T., Silva, C.S., Pereira, M.A., Rozeira, J.: Evaluation of the Menzies method potential for automatic dermoscopic image analysis. CompIMAGE 2012, 103–108 (2012)

    Google Scholar 

  111. Rubegni, P., et al.: Automated diagnosis of pigmented skin lesions. Int. J. Cancer 101(6), 576–580 (2002)

    Article  Google Scholar 

  112. Jinnai, S., Yamazaki, N., Hirano, Y., Sugawara, Y., Ohe, Y., Hamamoto, R.: The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8), 1123 (2020)

    Article  Google Scholar 

  113. Combalia, M., et al.: BCN20000: dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019)

  114. Gutman, D., et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 (2016)

  115. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172. IEEE (2018)

    Google Scholar 

  116. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH 2-A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440. IEEE (2013)

    Google Scholar 

  117. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  118. Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. arXiv preprint arXiv:2008.07360 (2020)

  119. Boer, A., Nischal, K.: www.derm101.com: a growing online resource for learning dermatology and dermatopathology. Indian J. Dermatol. Venereol. Leprol. 73(2), 138 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sharif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ul haq, I., Amin, J., Sharif, M., Almas Anjum, M. (2022). Skin Lesion Detection Using Recent Machine Learning Approaches. In: Saba, T., Rehman, A., Roy, S. (eds) Prognostic Models in Healthcare: AI and Statistical Approaches. Studies in Big Data, vol 109. Springer, Singapore. https://doi.org/10.1007/978-981-19-2057-8_7

Download citation

Publish with us

Policies and ethics