Skip to main content
Log in

Designing a new reversible ALU by QCA for reducing occupation area

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is a novel promising nanoscale technology with high speed, low power consumption and high density that allows the design of integrated circuits. This potential merit instigated the QCA to be an appropriate alternative to the complementary metal oxide semiconductor (CMOS) technology. The arithmetic and logic unit (ALU) is considered as the basis of processing and computational units in processor systems. In this paper, we proposed a new design for reversible ALU. The significant advantages of the proposed method are low complexity, high performance, low cellular consumption, high speed and low occupation area. The proposed scheme was designed at three levels and four gates: “AND,” “OR,” “XOR” and “Full Adder.” The proposed method was simulated by QCADesigner. According to the simulated results, it reduced cell count for 28% and area for 51% in comparison with previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Barughi YZ, Heikalabad SR (2017) A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int J Theor Phys 56:2848–2858

    Article  MATH  Google Scholar 

  2. Abdullah-Al-Shafi M, Bahar AN, Bhuiyan MMR, Shamim S, Ahmed K (2018) Average output polarization dataset for signifying the temperature influence for QCA designed reversible logic circuits. Data Br 19:42–48

    Article  Google Scholar 

  3. Sen B, Sahu Y, Mukherjee R, Nath RK, Sikdar BK (2016) On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron J 47:7–18

    Article  Google Scholar 

  4. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825

    Article  Google Scholar 

  5. Sasamal TN, Singh AK, Mohan A (2016) An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Opt Int J Light Electron Optics 127:8576–8591

    Article  Google Scholar 

  6. Khosroshahy MB, Moaiyeri MH, Angizi S, Bagherzadeh N, Navi K (2017) Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess Microsyst 50:154–163

    Article  Google Scholar 

  7. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191

    Article  MathSciNet  MATH  Google Scholar 

  8. Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86:82–85

    Article  Google Scholar 

  9. Perkowski M, Jozwiak L, Kerntopf P, MishchenkoA, Al-Rabadi A, Coppola A et al (2001) A general decomposition for reversible logic. In: Proceedings of 5th International Workshop on Applications of Reed-Muller Expansion in Circuit Design. Starkville, MS, Aug. 2001, pp 119–138

  10. Haghparast M, Navi K (2008) Design of a novel fault tolerant reversible full adder for nanotechnology based systems. World Appl Sci J 3:114–118

    Google Scholar 

  11. Babaie S, Sadoghifar A, Bahar AN (2018) Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular Automata (QCA). IEEE Trans Circuits and Syst II Express Br. https://doi.org/10.1109/TCSII.2018.2873797

    Google Scholar 

  12. Heikalabad SR, Gadim MR (2018) Design of improved arithmetic logic unit in quantum-dot cellular automata. Int J Theor Phys 57:1733–1747

    Article  MathSciNet  MATH  Google Scholar 

  13. Gupta N, Choudhary K, Katiyal S (2013) Two bit arithmetic logic unit (ALU) in QCA. Int J Recent Trends Eng Technol 8:35

    Google Scholar 

  14. Azghadi MR, Kavehie O, Navi K (2012) A novel design for quantum-dot cellular automata cells and full adders. arXiv preprint arXiv:1204.2048

  15. Kim K, Wu K, Karri R (2005) Towards designing robust QCA architectures in the presence of sneak noise paths. In: Proceedings of the Conference on Design, Automation and Test in Europe, vol 2, pp 1214–1219

  16. Bahar AN, Waheed S, Hossain N, Asaduzzaman M (2018) A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex Eng J 57:729–738

    Article  Google Scholar 

  17. Hosseinzadeh H, Heikalabad SR (2018) A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectronc Eng 192:52–60

    Article  Google Scholar 

  18. Sheikhfaal S, Angizi S, Sarmadi S, Moaiyeri MH, Sayedsalehi S (2015) Designing efficient QCA logical circuits with power dissipation analysis. Microelectron J 46:462–471

    Article  Google Scholar 

  19. Niemier MT (2000) Designing digital systems in quantum cellular automata, University of Notre Dame

  20. Waje MG, Dakhole P (2013) Design and implementation of 4-bit arithmetic logic unit using quantum dot cellular automata. In: 2013 IEEE 3rd International Advance Computing Conference (IACC) pp 1022–1029

  21. Ghosh B, Kumar A, Salimath AK (2013) A simple arithmetic logic unit (12 ALU) design using quantum dot cellular automata. Adv Sc Focus 1:279–284

    Article  Google Scholar 

  22. Teja VC, Polisetti S, Kasavajjala S (2008) QCA based multiplexing of 16 arithmetic & logical subsystems-a paradigm for nano computing. In: 3rd IEEE International Conference on Nano/Micro engineered and Molecular Systems 2008. NEMS 2008, pp 758–763

  23. Sen B, Dutta M, Goswami M, Sikdar BK (2014) Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron J 45:1522–1532

    Article  Google Scholar 

  24. Sen B, Dutta M, Singh DK, Saran D, Sikdar BK (2012) QCA multiplexer based design of reversible ALU. In: 2012 IEEE International Conference on Circuits and Systems (ICCAS) 2012, pp 168–173

  25. Goswami M, Sen B, Mukherjee R, Sikdar BK (2017) Design of testable adder in quantum-dot cellular automata with fault secure logic. Microelectron J 60:1–12

    Article  Google Scholar 

  26. Gadim MR, Navimipour NJ (2018) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24:1–11

    Article  Google Scholar 

  27. Naghibzadeh A, Houshmand M (2017) Design and simulation of a reversible ALU by using QCA cells with the aim of improving evaluation parameters. J Comput Electron 16:883–895

    Article  Google Scholar 

  28. Abutaleb M (2018) Robust and efficient QCA cell-based nanostructures of elementary reversible logic gates. J Supercomput 74:6258–6274

    Article  Google Scholar 

  29. Bahar AN, Waheed S, Uddin MA, Habib MA (2013) Double Feynman gate (F2G) in quantum-dot cellular automata (QCA). Int J Comput Sci Eng (IJCSE) 2:351–355

    Google Scholar 

  30. Heikalabad SR, Asfestani MN, Hosseinzadeh M (2018) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74:1994–2005

    Article  Google Scholar 

  31. Wang L, Xie G (2018) Novel designs of full adder in quantum-dot cellular automata technology. J Supercomput 74:4798–4816

    Article  Google Scholar 

  32. Hashemi S, Azghadi MR, Navi K (2018) Design and analysis of efficient QCA reversible adders. J Supercomput. https://doi.org/10.1007/s11227-018-2683-0

    Google Scholar 

  33. Ahmadpour S-S, Mosleh M (2018) A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput 74:4696–4716

    Article  Google Scholar 

  34. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3:26–31

    Article  Google Scholar 

  35. Roohi A, DeMara RF, Khoshavi N (2015) Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron J 46:531–542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghaffari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskouei, S.M., Ghaffari, A. Designing a new reversible ALU by QCA for reducing occupation area. J Supercomput 75, 5118–5144 (2019). https://doi.org/10.1007/s11227-019-02788-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02788-8

Keywords

Navigation